Proceeding

SCESCM 2012

Sustainable Civil Engineering Structures and Construction Materials

Yogyakarta, September 11 – 13, 2012

Editors : Priyosulistyo, Suhendro B., Kanie S., Satyarno I., Senjutichai T., Triwiyono A., Sulistyo D., Siswosukarto S., Awaludin A.

Departement of Civil and Environmental Engineering Faculty of Engineering Universitas Gadjah Mada

ORGANIZING ASSOCIATION :

EDITORS:

Priyosulistyo Bambang Suhendro Shunji Kanie Iman Satyarno Teerapong Senjutichai Andreas Triwiyono Djoko Sulistyo Suprapto Siswosukarto Ali Awaludin

Published by : Department of Civil and Environmental Engineering Universitas Gadjah Mada, Yogyakarta, INDONESIA Website : http://tsipil.ugm.ac.id Tel : +62-274-545675 Fax : +62-274-545676

ISBN : 978-602-95687-7-6

Copyright ©2012 by Department of Civil and Environmental Engineering, UGM

The texts of the papers in this volume were set individually by the authors or under their supervision. Only minor corrections to the text may have been carried out by the publisher. By submitting the paper in the 1st International Conference on Sustainable Civil Engineering Structures and Construction Management, the authors agree that they are fully responsible to obtain all the written permission to reproduce figures, tables, and text from copyrighted material. The authors are also responsible to give sufficient credit included in the figures, legends, or tables. The organizer of the conference, reviewers of the papers, editors, and the publisher of the proceedings are not responsible for any copyright infringement and the damage they may cause.

ORGANIZING ASSOCIATION

Departement of Civil and Environmental Engineering Faculty of Engineering Universitas Gadjah Mada, Indonesia

Division of Engineering and Policy for Sustainable Environment Faculty of Engineering Hokkaido University, Japan

Institute of Concrete Structures and Building Materials (IMB) Faculty of Civil Engineering, Geo, and Environmental Sciences Karlsruhe Institute of Technology, Germany

CONFERENCE CHAIRS

Prof. Bambang Suhendro, Universitas Gadjah Mada Prof. Tamon Ueda, Hokkaido University

CONFERENCE SCIENTIFIC COMMITTEE

Prof. Priyosulistyo, Indonesia (chair) Prof. Shunji Kanie, Japan Prof. Iswandi Imran, Indonesia Prof. Benjamin Lumantarna, Indonesia Prof. I Gusti Putu Raka, Indonesia Prof. Teerapong Senjuntichai, Thailand Prof. Mohd Zamin Jumaat, Malaysia Prof. Iman Satyarno, Indonesia Prof. Harald S Mueller, Germany Assoc. Prof. Teng Susanto, Singapore Prof. Toshiro Hayashikawa, Japan Prof. Widiadjana Merati, Indonesia Prof. Tamon Ueda, Japan Prof. Donguk Choi, Korea Prof. Somnuk Tengtermsirikul, Thailand Prof. Y W Chan, Taiwan Assoc. Prof. Monica Snow, USA Assoc. Prof. Bamband Supriyadi, Indonesia Assoc. Prof. Indra Diati Sidi, Indonesia Dr. Biemo W Soemardi, Indonesia Dr. Terry Webb, New Zealand

CONFERENCE ORGANIZING COMMITTEE

Dr. –Ing. Andreas Triwiyono Dr. Muslikh Dr. –Ing. Djoko Sulistyo Suprapto Siswosukarto, Ph.D Toriq Agus Ghuzdewan, MSCE M. Fauzie Siswanto, M.Sc Arief Setiawan Budi Nugroho, Ph.D Ali Awaludin, Ph.D Ashar Saputra, Ph.D Akhmad Aminullah, Ph.D Rr. Astin Prinawati, S.T.

CONFERENCE SPONSORS

- HAKI, Indonesian Society of Civil and Structural Engineering
- PII, Institution of Engineers Indonesia
- JSCE, Japan Society of Civil Engineers
- ACF, Asian Concrete Federation
- PT. Indocement Tunggal Prakarsa
- PT. Holcim Indonesia
- PT. Adhi Karya (Persero), Tbk.

Dear Participants,

A year preparation for The 1st International Conference on Sustainable Civil Engineering Structures and Construction Materials has already been elapsed. Announcement for abstracts and full papers submission has also been delivered through electronic mail to many related domestic and foreign universities as well as public / private institutions in Europe and Asian Countries since the beginning of this year. Up to the closing date of the abstract submission, more than 63 abstracts have been submitted from the USA, the UK, the Germany, the Switzerland, the Japan, the Taiwan, the Singapore, the Thailand, the Pakistan and the Iran.

But unfortunately, for many reasons not all participants submitting their abstracts proceeded with their full papers on the appointed date. For this reason the organizing committee decided to extend the period of the submission. As the number of the submitted full papers was less than we expected, not all reviewers were involved in the review process. The organizing committee realizes that providing a good quality of papers is not just a matter of writing itself, but a comprehensive knowledge. Therefore, the organizing committee does understand to prospective participants whom are not able to finish writing on the scheduled date. The organizing committee still think that a number of 44 full papers will be reasonably enough to host this International Conference for the first time. The organizing committee do believes that in the next International Conference on SCESCM, the adequate time for preparing full papers can be accommodated by the organizing committee for involvement of more participants.

As the chairperson of scientific committee, anyway, would like to thank for the generousity and help of the reviewers who have reviewed and delivered their comments. I also would like to say sorry to all reviewers for any inconvenience that may happen during this review process.

Prof. Priyosulistyo

Chairperson of Scientific Committee The 1st International Conference on SCESCM

It is my great pleasure, on behalf of the Department of Civil and Environmental Engineering, Universitas Gadjah Mada, to welcome all of you to participate in the 1st International Conference on Sustainable Civil Engineering Structures and Construction Materials.

It is also a great honor for our Department to host this very important conference addressing on the issues of sustainability in Civil Engineering.

This conference is held as result of the close collaboration between Universitas Gadjah Mada, Hokkaido University, and Karlsruhe Institute of Technology. We would like to thank to both universities for the nice collaboration that has been implemented so far.

It is the pleasure of the Department of Civil and Environmental Engineering, Universitas Gadjah Mada, to organize this conference, and I am very confident that the conference will bring the best of the participants and to forester future collaborations among us.

Concept of sustainability has been gradually applied in various aspects of civil engineering structures. The concept as indicated by high efficiency in human and material resources but less in environmental impacts shall be further implemented in design, construction and maintenance of every civil engineering structure. In this regard, potential networking and sharing information on the latest scientific findings and achievements among civil engineers around the globe shall be accommodated through international conferences as what we will have in this conference in our blue campus of Universitas Gadjah Mada, Yogyakarta-Indonesia.

We are glad that we will have opportunities in this conference to learn from our colleagues, to share knowledge and experiences among us, and after it to tackle the challenges on the way in the future.

We would like also to express our hearty welcome to many distinguished professors, academicians, practitioners, industry representatives, as well as students, who have been joining and participating in this conference.

We truly believe that we can advance our profession, both individually and collectively.

September is the best time of the year, and I wish you all pleasant stay in Yogyakarta.

We do hope that this symposium would be successfully held to facilitate all participants in exchanging knowledge, experiences, and ideas for the sake of solving our problems related to sustainability.

Finally, I would like to thanks to the conference organizers for the hard working to prepare this event. Appreciation is also addressed to those who assisted in making the 1st International Conference on Sustainable Civil Engineering Structures and Construction Materials a reality. I would also to thank all of you for traveling to our beautiful country.

I am confident that you will enjoy your stay and that the conference will be an informative and enjoyable event.

Thank you very much.

Prof. Bambang Suhendro, Ph. D

Head of Civil and Environmental Engineering Department Universitas Gadjah Mada

Cover	Page	i
Editor	r Page	ii
	rence Organization	
	ce	
	oming Speech	
	of Contents	viii
•	ote & Invited Speakers	
1.	Concrete Structures	
	Harald S. Müller	2
2.		
	Structures	
_	Bambang Suhendro	16
3.	Service Life Prediction of Concrete Structures Under Combine Effects <i>Tamon Ueda</i>	26
4.		20
	Iman Satvarno	36
5.	Effect of Change of Stiffness and Damping on the Strength Prediction of Reinforced Concrete Building Structures Using Microtremor Analysis	
	Priyosulistyo	46
6.	Sustainable Development in Vulnerable Environments : Difficulties in Cold Regions Engineering and Construction	
	Shunji Kanie	53
7.	1	
	Iswandi Imran	62
8.		
	Indra Djati Sidi	70
Struct	tural Engineering	
1.	Forensic Engineering on Cause of Tunnel Roof Cave-In Triggered by Simultaneous	
	Blasting in Dam Project, West Java, Indonesia	
	C.A. Makarim, D. Junaidy, G. Andika Pratama	77
2.		
	D.K. Wibowo, M-Y. Cheng, D. Prayogo	82
3.		
	Isolation Bearing and Another Hybrid Rigid Frame Connections	
	R. Al Sehnawi, A. Nakajima, H, Al Sadeq	90
4.		
	Study at Sermo Dam, Yogyakarta	
	Sunantyo T.A., Suryolelono K. B., Djawahir F., Adhi A.D., Swastana A.	98
5.	\mathcal{J}	
	T. V. Tran., T. Boonyatee., M. Kimura	106

6.	Experimental Study on Comfinement Effect of Hoop Reinforcing Bar for New Shear	
	Connector Using Steel Pipe	
	Y. Matsuo, T. Ueda, H. Furuuchi, R. Yamaguchi, K. Nakayama	112
7.	Puching Shear Behavior of Overlay Strengthened RC Slab Under Traveling Wheel-Type	
	Fatigue Loading	
	Y. Shimanaka, T. Ueda, H. Furuuchi, D. Zhang, T. Tamura, S-C. Lim	117
8.	Lateral Load-Slip Curve of Steel-wood-steel Bolted Timber Jpints Composed of Several	
	Layers with Different Specific Gravities	
	E. Pesudo, A. Awaludin, B. Suhendro	124
9.	Finite Element Modeling of the Transition Zone Between Aggregate and Mortar in	
	Concrete	
	Han Ay Lie, Parang Sabdono, Joko Purnomo	130
10.	Shear Strength of Normal to High Strength Concrete Walls	
	J. Chandra, S. Teng	138
11.	Nonlinear Analysis of Reinforced Concrete Beams Using FEM with Smeared Crack	
	Approach, Mohr's Failure Criteria, and The Tomaszewicz Model	
	Sri Tudjono, Ilham Maulana, Lie Hendri Hariwijaya	146
12.	Flutter Analysis of Cable Stayed Bridge	
	Sukamta	154
13.	Lesson Learned From The Damage Of Academic Buildings Due To Earthquake in	
	Padang, Sumatera	
	Djoko Sulistyto, Suprapto Siswosukarto, Priyosulistyo, Andreas Triwiyono, Ashar	
	Saputra, Fauzie Siswanto	157
14.	The Flexural Behavior in Perpendicular Direction of Concrete Brick Walls with	
	Wiremesh Reinforcement and Their Application for Simple Houses	
	N. Wardah, A. Triwiyono, Muslikh	166
	al Engineering	
1.	Mechanical Properties of Gunny Sack Fiber Concrete	1 7 0
•	Antonius, Himawan Indarto, Devita Kurniastuti	172
2.	Development and Optimization of Cement Based Grouting Materials	1
2	R. Breiner, E. Bohner, H. S. Müller	177
3.	A Review on Test Results of Mechanical Properties of Bamboo	100
4	I.G.L.B. Eratodi, A. Triwiyono, A. Awaludin, T.A. Prayitno	186
4.	Application of Wood Stave Pipeline in Seropan Caves	102
_	A. Hayuniati, A. Awaludin, B. Suhendro	193
5.	The Characteristic of Ultrasonic Pulse Velocity (UPV) On Mortar With Polypropylene	
	Fibers As Additives	100
ſ	Faqih Ma arif, Priyosulistyo, Hrc	199
6.	Precast Concrete Construction : A Green Construction Case Study : Comparison of	
	Construction Energy and Environmental Influence in Low Cost Housing Construction in	
	Batam	207
7	Hari Nugraha Nurjaman, Haerul Sitepu, H.R. Sidjabat	207
7.	Evaluation of ISO 22157-2 Test Method for Tension Parallel to Grain of Petung Bamboo	
	(Dendrocalamus asper)	216
0	I.S. Irawati, B. Suhendro, A. Saputra, T.A. Prayitno	216
8.	Compression Fracture Energy of Cement Treated Sands	222
0	K. A. Tariq, T. Maki	223
9.	Effects of Steel and Polypropylene Fiber Addition on Interface Bond Strength Between	
	Normal Concrete Substrate and Self-Compacting Concrete Topping	220
10		228
10.	Influence Of Portland Cement Paste Quantity and Quality on Early Age Compressive	
	Strength of Mortar	226
	Yohannes Lim	236

11.	Study on the Durability of Alkali Activated Binder and Geopolymer Concrete – Chloride Permeability and Carbonation	
	Andi Arham Adam, David W. Law, Tom Molyneaux, Indubhushan Patnakuni	240
12.	Long-Term Durability Performance of Green Concrete for the Marine Environment	
	T. Y. Darren Lim, Susanto Teng	247
13.	Design and Production of FRP Composite Roofing Sheets	
	Djoko Setyanto, Jamasri, Bambang Suhendro, Alva Edy Tontowi	254
14.	The Effect of Leaching of CCB4 Preservative Material on Tensile Strength of 2 Species of Bamboo	
	M. Fauzie Siswanto, Hrc. Priyosulistyo, Suprapto, T.A. Prayitno	260
15.	Artificial Intelligence Approaches for Optimizing High-Performance Concrete Mix Design	
	D. Prayogo, MY. Cheng, D. K. Wibowo	267
16.	Determination of Tensile Properties of Concrete at Early Ages on Large Scale Specimens	
1.7	Suprapto Siswosukarto	274
17.	Use of Bamboo For House Retrofitting In Padang Post-Earthquake 30 September 2009	201
10	Etri Suhelmidawati, Wendi Boy, Riki Adriadi, Rekana Zamzarena	281
18.	Research on the Influence of Coal Ash as Filler in Paved Mixed AC-WC	207
10	Syaiful, Setiana Mulyawan Development of Structural Walls Made from LVL Sengon (Paraserianthes falcaria) :	287
19.	Basic Mechanical Properties	
	A. Awaludin	200
20	Waste Utilization of Coal Ash and Tailings as Bricks	299
20.	Arif Susanto, Hendrikus Budyanto, Edi Putro	303
	Ing Susano, menankas Daayano, Da Taro	505
Constr	uction Management	
	Reliability-based ME-MCDA for Sustainable Global Energy Supply Technology	
	Assessment : Net Energy Balance and Density Considerations	
	Citra Satria Ongkowijoyo	307
22.	Minimizing Construction Cost and CO2 Emission Problem by Imitating the Behavior of	
	Ant Colony	
	D. Prayogo, MY. Cheng, D. K. Wibowo	316
23.	Value Engineering In Construction Method Rusunawa Prototype Building 5 Floor	
	Dwi Dinariana, Imia Lukito	321
24.	Model of Public Private Partnerships for Develop Settlement Infrastructure in Jakarta	
	Fitri Suryani, Tommy Ilyas, Suyono Dikun, Suparti A. Salim	327
25.	Community –Based Flood Hazards Mapping for Risk Reduction in Flood Prone Areas :	
	Case Study at Kudus Regency, Kudus	
	Catur Basuki Setyawan	334
26.	Multicriteria Decision Making of Power Plant and its Impact on The Living Standard	
	Using Extended Graph Theory and Matrix Method Under Fuzzy Environment	a 4 =
	Citra Satria Ongkowijoyo	347

Value Engineering In Construction Method Rusunawa Prototype Building 5 Floor

Dwi Dinariana

University of Persada Indonesia YAI, Jl. Salemba 7 Central Jakarta Email : dwidinariana@yahoo.com

Imia Lukito

IAPPI (Indonesian Association of Precast and Prestressed Engineers), the Secretariat : West Cilandak 23 Jl.Pangeran Antasari, South Jakarta

Abstract: Since the introduction of the National Movement of One Million Houses Development (GNPSR) by the Government in 2004, the achievement of development Rusuna (Rumah Susun Sederhana = Simple Flats) until mid-2006 a new range \pm 5,000 units / year from a target of 60,000 units Rusunawa (Rumah Susun Sederhana Sewa = Simple flats rent for lowincome communities). The government target is of course requires no small amount of the budget, it would require effort - an effort to suppress the price of Value Engineering (VE) such that but without reducing the quality and the quality of the building itself. And for the achievement of these targets needs to be done the business - business development acceleration Rusuna. One attempt was to compare two methods of acceleration implementation the conventional method and the method of precast. Based on these problems required a study to calculate the VE in a Prototype Development Project Rusunawa 5 Floors in terms of implementation methods, to reduce production costs without reducing the quality of the building and create a project plan based on the VE by using Microsoft Project to get the most efficient time planning and fast . Analysis carried out calculations on the method of implementation of the methods of precast concrete systems and conventional systems. From the comparison of the methods of implementation precast construction and conventional construction, selected the most efficient price, then do the planning of the VE was selected to plan a schedule for implementing the most efficient. From the results of the analysis, it is observed that for the method of implementation, the method selected precast concrete system with an efficiency of 26.84% price structure and time schedule for implementation is faster than conventional methods of Implementation.

Keywords: Value Engineering, Construction Methods, Building.

1 GENERAL INFORMATION

Since 2004, the Government launched the One Million Houses Development National Movement (GNPSR) which is a moral movement to all elements of the nation to jointly responsible and work towards accelerating the provision of decent homes occupied primarily for the MBR (Low-Income Communities). In the period 2004 - mid 2006, new waking Rusuna Rusuna (Rumah Susun Sederhana = Simple Flats) the range \pm 5,000 units / year. While the target of the Government is 60,000 units and 25,000 units Rusunawa (Rumah Susun Sederhana Sewa = Simple flats rent for low-income communities)/Rusunami (Rumah Susun Milik = Simple flats owned by a designated low-income communities). Then in mid 2006, the Government initiated the accelerated development program Rusuna. Based on Presidential Decree No. 22 In 2006, on the Coordinating Team to Accelerate Development in Urban Flats, the Coordination Team agreed to use precast concrete systems in development with the aim of producing Rusuna a quick but quality.

But until today often complain that the quality of the building itself is not satisfactory Rusuna. Because of its construction which is massive and dedicated to the Low-Income Communities (MBR) and Medium-Income Communities (MBM), so that not a few rogue contactor-building contractors Rusuna so long alone. Often found in Rusuna that have been built and that has been inhabited, the components - there are still many structural components are easy to collapse when hit by an earthquake in 2009. Many also found materials that are not good quality, water seepage, leaks and other things that make Rusuna performance is not good.

To that end, the study tries to present how the budget could be reduced such that the resulting building, but the quality remains the applicable standard. The application of VE in Indonesia itself began much done on construction projects.

2 RESEARCH OBJECTIVES

The purpose of this study are:

Calculating Value Engineering Rusunawa • Prototype Development Project 5 Floor Type 36 Kemenpera terms of implementation methods and building materials, to reduce production costs without reducing the quality of the building.

3 THEORETICAL BACKGROUND

3.1 Definitions and Basic Definition of Value Engineering

Value Engineering (VE) or in Indonesian called value engineering, is an organized creative approach to optimize the cost and quality of a facility (Dell 'Isola, 1982). VE was first developed in the manufacturing industry in the aftermath of World War II to make the change and the search for alternative methods of product / other components made at the time as a result of lack of resources during World War II. Efforts made to make these changes increase the value of a product by focusing on the function of the product (Megeorge and Palmer, 1997).

The application of VE in the construction field is a systematic approach taken by a team of multiple disciplines who focus on value and function. The application of VE in construction projects have considerable potential savings from the project budget. From research conducted in America by Palmer, Kelly and Male indicate that savings achieved in the application of VE in construction projects is quite large, reaching 34-36% of the total project budget of each discipline (Palmer, Kelly and Male, 1996).

3.2 Precast Concrete Systems

Precast concrete system is a system of building components fabricated construction / printed first in the factory or in the field, then arranged on the ground to form a single unit buildings.

a Structural Design Concepts With Precast Systems

Precast systems are divided into:

- 1. Frame system (columns and beams)
- 2. Bearing Wall System (wall)
- 3. System Cell
- 4. Precast Flooring
- 5. Precast Roof

Another consideration in the change of the building with precast method:

- 1. Joint System
 - Dry Joint (Las embeded, Bolts)
 - Wet Joint (Grouting, Concrete)
- 2. Erection System
 - Capacity of lifting equipment

- Dimensions and weight of precast concrete
- Equipment removal of precast concrete
- Scaffolding Equipment

b Excess Precast Systems

Objective basis the efficiency of the precast system for conventional systems are:

- 1. This system has good quality control because:
 - Producing a component on the ground so that the production process becomes easier and the results can be measured with good production
 - Installation of precision components to better ensure the quality of structures in building construction.
- 2. Shorter in the implementation due to:
 - Implementation of the structure in conjunction with the production of components
 - Implementation of the structure along with the implementation of architectural finishing work.
- 3. More environmentally friendly because:
 - Use of wood material is very minimal
 - Waste material is almost no
 - The development process to minimize disruption of air and noise pollution.
- 4. More economical to fee because:
 - Allowing use security numbers are more efficient in planning for better quality control and secure
 - The reduction in the use of molds and scaffolds
 - Shorten the total construction time
 - Labour productivity in the field is higher.
- c. Terms of Use Precast Systems Rusuna In Development

Minimum requirements of the construction site conditions that can be simple flats using precast system if the production activities carried out in the field are:

- 1. Casting needed Area / Land Production. Is a land with a certain extent prepared for the place of production of precast components, which can be made on site or in the specific manufacturing site outside the development.
- 2. Stocking needed Area / Land buildup.

1st International Conference on Sustainable Civil Engineering Structures and Construction Materials

Is a land with a certain extent prepared for the accumulation of temporary precast components, arranged in the field prior to forming a unity building.

- 3. Necessary room for maneuver heavy equipment, the need for broad room for maneuver depends on the type and capacity of the tool.
- 4. Land area of production and accumulation of land to be provided depending on production schedules and the number of tools.

This special is a consideration in the procurement of precast components:

- 1. Site
- 2. System Mould / Mold
- 3. Dimensions and weight
- 4. Engineer and the workers
- 5. Heavy equipment and utility site.

Component regulatory system and optimization of precast or precast components minimizing type will greatly affect the preparation of site layout on the:

- 1. Storage Planning
- 2. Transfer Planning
- 3. Erection of planning.

3.2 Conventional System

Conventional system is a system of development that all components of the building is directly done / in the field cast (cast in situ).

4 RESULTS AND DISCUSSION

4.1 Comparison of Price Structure And Precast Systems Using Conventional and

Precast calculations obtained from the Budget Plan (RAB) with a unit price analysis of the city fiscal year 2010 and refers to the calculation procedure RSNI unit price work for construction of precast concrete structures gedung. Budget Plan Work Prototype Development Rusunawa 5 Floor Type 36 Kemenpera by using the system shows the conventional rate of Rp. 4,971,570,141.13, - whereas when using precast system, showing the number of Rp. 3,637,108,245.76, -. Efficiency is:

Efficiency = (the price structure of a conventional system - the price structure of the system of precast)/(pricing structure of a conventional system) x 100%

Then the efficiency of the price of precast concrete system is 26.84%.

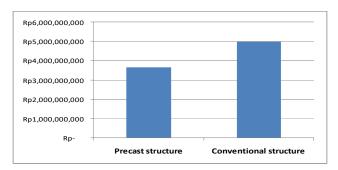


Figure 1. Price comparison chart of the structure using precast and conventional systems

4.2 Alternative Building Materials Wall

At this stage of creativity to do is look for precast building materials that can be used as a substitute / alternative for the same function. Alternative materials that will be precast in trying to apply as a building material Rusunawa Prototype is a wall. Serves as a retaining wall of light, wind, rain, floods, and others. Materials alternative building that will try to use is:

- 1. Block
- 2. Brick, size 22 x 11 x 5 cm
- 3. Lightweight brick, size 60 x 20 x 7.5 cm
- 4. Kalsiboard partition, size 244 x 122 x 0.8 cm
- 5. Wall panels, size 60 x 10 x 10 cm

6. Facade wall (produced by PT. Beton Elemindo Perkasa)

Of materials - materials above, try the wall material mix design alternatives, namely the outer walls of buildings and walls in the (inter-space) of the building.

Table 1. Mix Design Material Wall Alternative

No.	Outside of the walls	Inner Wall (Space Shuttle)
1	Batako	Batako
2	Batako	Light brick
3	Batako	Brick
4	Batako	Partisi Kalsiboard
5	Batako	Panel Dinding Hebel
6	Light brick	Light brick
7	Light brick	Batako
8	Light brick	Brick
9	Light brick	Partisi Kalsiboard
10	Light brick	Panel Dinding Hebel
11	Brick	Brick
12	Brick	Batako
13	Brick	Light brick
14	Brick	Partisi Kalsiboard
15	Brick	Panel Dinding Hebel
16	Fasade (Beton Elemindo Perkasa)	Brick
17	Fasade (Beton Elemindo Perkasa)	Batako
18	Fasade (Beton Elemindo Perkasa)	Light brick
19	Fasade (Beton Elemindo Perkasa)	Partisi Kalsiboard
20	Fasade (Beton Elemindo Perkasa)	Panel Dinding Hebel

Unit price of building materials based on the Retail Price Capital City in 2010 and refers to the SNI procedure for the calculation of unit prices for construction work and residential buildings can be seen in the table 2 :

4.3 Calculation of Combined Alternative Building Materials Wall

Alternative combinations of the calculated wall construction materials (interior and exterior) on the architectural work, it can be seen that the cost of the smallest job is located on the outer walls and concrete block walls in use at a price of Rp. 3,962,939,025.54. As for the cost of work is greatest in light brick with a price of Rp. 5,061,604,121.29. Recapitulation of the mix design calculations can be seen in the table 3 :

From the above table Budget Plan combination of architectural building materials building wall Rusunawa Floor Type 36 Prototype 5 Kemenpera by using lightweight bricks indicate the number of Rp. 5,061,604,121.29 while when using concrete blocks, showing the number of Rp. 3,962,939,025.54, -. Efficiency is:

Efficiency = (Total price of light brick architecture – Total price of brick architecture) / (Total price of light brick architecture) x 100%

Table 2. Wall Unit Price Alternative Materials

Then the efficiency of the architecture by using the price of building materials are brick to brick light of 21.71%.

4.4 Budget Plan (RAB) Construction Work

Based on the price of construction work on buildings VE Rusunawa Floor Type 36 Prototype 5 Kemenpera, can be seen that the construction cost of the least of which is contained in the structure of the work done with precast system and the combination of inner and outer walls of brick with a price of Rp. 11,221,235,505.00. As for the cost of most major construction is done on the job structure with precast system and the combination of inner and outer brick wall light with a price of Rp. 12,429,767,110.33. While the specifications in the field, material of construction materials is a light brick wall. Efficiency is:

Efficiency = (Total Budget Plan lightweight precast and brick-Total Budget Plan precast + concrete blocks) / (Total Budget Plan lightweight precast and brick) x 100%

Then the efficiency of methods of implementation of the system of precast concrete and concrete block wall building materials to building materials brick wall of light is 9.72%.

		1m2 install red	1m2 install	1m2 Fasade	1m2 Hebel Wall	1m2 partition
	1m2 install brick	brick (bata	lightweight brick	concrete (Beton	Panels (Panel	Calsiboard (Partis
	(batako)	merah)	(bata ringan)	Elemindo	Dinding Hebel)	Kalsiboard)
		(5 x 11 x 22)	(60x20x7,5)	Perkasa)	(3x0,6x0,075 m)	(1220x2440x8)
Wage + Material	1	2	3	4	5	6
Price Aci + Plastering	Rp 51.315,23	Rp 128.255,23	Rp 215.200,58	Rp 375.000,00	Rp 148.236,28	Rp 112.747,00
6	Rp 32.222,84	Rp 32.222,84	Rp 32.222,84	-	-	-
TOTAL						
	Rp 83.538,06	Rp 160.478,07	Rp 247.423,42	Rp 375.000,00	Rp 148.236,28	Rp 112.747,00
(%) against the brick (batako)	1,00	1,92	2,96	3,89	1,77	1,35

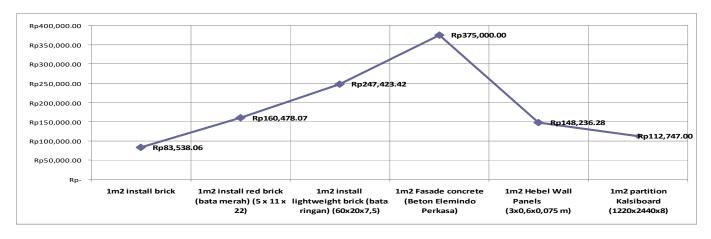


Figure 3. Unit Price Graph for Wall Material Alternatives

1st International Conference on Sustainable Civil Engineering Structures and Construction Materials

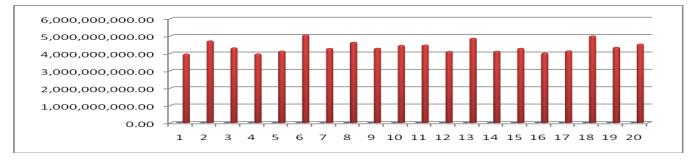


Figure 4. Graph Total Price Combination Wall Material Alternatives

No.	Descriptions	Tota	ll Price
1	Batako	Rp	3.962.939.025,54
2	Batako + Light brick	Rp	4.720.685.446,76
3	Batako + Brick	Rp	4.316.547.403,13
4	Batako + Partisi Kalsiboard	Rp	3.968.728.065,87
5	Batako + Panel Dinding Hebel	Rp	4.133.745.747,38
6	Light brick	Rp	5.061.604.121,29
7	Light brick + Batako	Rp	4.282.182.748,88
8	Light brick + Brick	Rp	4.639.937.576,26
9	Light brick + Partisi Kalsiboard	Rp	4.295.992.970,46
10	Light brick + Panel Dinding Hebel	Rp	4.461.010.651,97
11	Brick	Rp	4.478.734.332,13
12	Brick + Batako	Rp	4.110.616.033,28
13	Brick + Light brick	Rp	4.872.648.445,46
14	Brick + Partisi Kalsiboard	Rp	4.124.691.880,29
15	Brick + Panel Dinding Hebel	Rp	4.289.443.936,37
16	Fasade (Beton Elemindo Perkasa) + Brick	Rp	4.015.394.797,43
17	Fasade (Beton Elemindo Perkasa) + Batako	Rp	4.145.483.892,77
18	Fasade (Beton Elemindo Perkasa) + Light brick	Rp	5.003.569.627,41
19	Fasade (Beton Elemindo Perkasa) + Partisi Kalsiboard	Rp	4.352.800.179,12
20	Fasade (Beton Elemindo Perkasa) + Panel Dinding Hebel	Rp	4.535.905.884,25
	Total Price VE Combination Wall Material Material LOWEST PRICE	1	,
	Total Price VE Combination Wall Material Material HIGHEST PRICE		

5 CONCLUSIONS

From the analysis and calculation of VE and project planning on building Rusunawa 5 Floor Type 36 Prototype Kemenpera terms of implementation methods and building materials, can be deduced as follows:

- 1. Construction by using precast system implementation method based on the price structure of 26.84% more efficient than conventional systems.
- 2. For wall materials, the price of building architecture by using materials more efficiently brick wall material of 21.71% (against the highest price, the cost of material architecture of a light brick wall) and 9.72% more efficient (for the highest price, the total

cost of the project by using a light brick building materials).

- 3. By using precast system implementation time is faster because the precast component manufacturing jobs can be done early on when the land is ready, the production of overlapping can be done with the foundation work of erection, erection work of precast components can be done a day after the components manufactured are and architectural work can begin on time The next floor of the structure of work is being done because there is not much use precast system scaffold. Quality control is guaranteed because of the work or the production of components in the factory or in the site.
- 4. Owner sets a period of Prototype Development Rusunawa 5 floor is for 180

calendar days is very possible. On the planning schedule with the implementation of the method of precast concrete systems using Microsoft Project, Rusunawa construction can be completed within 170 days (not including the maturation of the land) so that the planning schedule ahead of time specified.

REFERENCES

Ashworth, Allan (1994). "Perencanaan Biaya Bangunan Tingkat Tinggi." PT Gramedia Pustaka Utama, Jakarta.

Bull, Jho W (1993). "Life Cycle Costing for Contruction." Blackie Akademic & Proffesional, London.

Collier, A. Courtland and Ledbetter, B William (1982). "Engineering Cost Analysis." Harper & Row, Publisher, New York.

Departemen Permukiman dan Prasarana Wilayah (2003). "Perencanaan dan Pengelolaan Rumah Susun Sederhana." (Modul C-57), Jakarta

Departemen Permukiman dan Prasarana Wilayah (2004). "Pedoman Umum Penyelenggaraan Rusunawa Tahun 2004 tentang Badan Pengelola dengan Pola UPTD, Tata Laksana Pengelola dan Tata Laksana Penghunian Rusunawa." Jakarta.

Fabrycky, W.J and Benyamin S Blanchchard (1991). "Life Cycle Cost and Economic Analysis." Prentice Hall Inc, Englewood Cliffs, New Jersey.

Juwana, J.S. (2005). "Panduan Sistem Bangunan Tinggi." Erlangga, Jakarta

Kelly, J and Stephen Male (1993). "Value Management in Design and Construction, E & FN." Spon, London

Kirk, SJ and Alphonse J, Dell'Isola (1995). "Value Engineering Practical Applications, for Design, Construction, Maintenance & Operations." Mc Graw Hill Inc, New York.

1-11-

.....

- XY - X - X - X

Participated Is

Paper Presenter

The 1st International Conference on Sustainable Civil Engineering Structures and Construction Materials "Enhancing The Role of Civil Engineering for Sustainable Environment"

> 11 - 13 September 2012 Yogyakarta, Indonesia

Chairperson Prof. Bambang Suhendro, Ph.D