

Home	>
Greetings	>
About Conference	>
Call for papers / sessions	>
Registration	>
Program / Speakers	>
Travel	>
Sponsorship / Exhibition	>
About Venue/ City of Sendai	>

Press

>

With Bosai Expo

International Association for Earthquake Engineering Japan Association for Earthquake Engineering

Proceedings

Links

As the spread of the COVID-19 has become a problem around the world, many countries are facing health and economic issues. In addition, many of you are also being subjected to various restrictions in your daily life, as movements inside and outside of the country, and visits and meetings with other people are restricted. First of all, I would like to sincerely wish for the health of you, your family and colleagues, and for an early resolution of the COVID-19 problem. As mentioned in previous communications, the 17th World Conference on Earthquake Engineering (17WCEE) was originally planned to be held from September 13 to 18, 2020, but due to the COVID-19 problem, we, the 17WCEE Organizing Committee, decided to postpone the 17WCEE by one year, to be held from September 27 to October 2, 2021, the 10th anniversary year of the 2011 Great East-Japan Earthquake and Tsunami Disaster in the same venue, in Sendai City, Miyagi Prefecture, Japan. At the same time, we promised that the full papers submitted by the end of March 2020 will be published as 2020 17WCEE Proceedings in September 2020.

I am very happy to inform you that delivering on this promise, the Proceedings has been successfully published this month with the support of all 17WCEE related people. The 17WCEE Organizing Committee would like to express sincere appreciation to those involved. The Proceedings contains over 2,500 full papers submitted by the end of March 2020 after completing all registration procedures by the deadline. Although the 17WCEE will be held in 2021, the papers published in the Proceedings become the author's research achievements in 2020 and can be widely referred to and utilized in the world.

Also, based on the one-year postponement of the conference, we will accept additional papers and combine them with the 2020 17WCEE Proceedings, and publish them in September 2021 as 2021 17WCEE Proceedings.

The 17WCEE Organizing Committee will do its best to successfully hold the 17WCEE in 2021.

By continuing or browse this website, you accept cookies which are used to offer a personalized experience on our website, generate statistics and realize advertising or social network tracking.

Find out more about Cookie policy.

You can change your cookie settings any time.

ACCEPT

Links / Proceedings :: 17WCEE -17th WORLD CONFERENCE ON EARTHQUAKE ENGINEERING-

Kimiro MEGURO Chair, 17WCEE Organizing Committee Professor, The University of Tokyo

Official Announce Letter is here.

Download

© 17th WORLD CONFERENCE ON EARTHQUAKE ENGINEERING.

By continuing or browse this website, you accept cookies which are used to offer a personalized experience on our website, generate statistics and realize advertising or social network tracking. Find out more about <u>Cookie policy</u>. You can change your cookie settings any time. ACCEPT

Home	Program / Speakers
Greetings	>
About Conference	
Call for papers / session	s>
Registration	Blind Prediction Contest Future Direction Social Program
Travel	>
Sponsorship / Exhibitio	n>
About Venue/ City of Sendai	> Meet the Masters
Links / Proceedings	
Press	
17WCEE News Letter	
With Bosai Expo	
Bosai / Disaster Management Expo in Sendai	
(1) 仙台市	In "Meet the Masters"organized by IAEE (International Association for Earthquake Engineering), we
City of Send	ai invite great names of earthquake engineering to WCEE. The four masters listed below are invited to 17WCEE. For each master, a special session related to the master's expertise is organized during
	WCEE, in which the master offers a keynote lecture. To make the session run most smoothly, a

person who has been close to the master is asked to serve as a moderator.

 *Prof. James Jirsa (USA)

 *Prof. Tsuneo Katayama (Japan)

 *Prof. Luis Esteva (Mexico)

 *Prof. Theo Tassios (Greece)

By continuing or browse this website, you accept cookies which are used to offer a personalized experience on our website, generate statistics and realize advertising or social network tracking. Find out more about <u>Cookie policy</u>. ACCEPT

You can change your cookie settings any time.

Keynote Lectures

*The speakers and the lecture materials may change without prior notice.

Professor Kojiro Irikura Professor Aichi Institute of Technology, Japan

For more details

Professor Satoshi Fujita Professor Tokyo Denki University, Japan

For more details

Mr. Niels B. Holm-Nielsen Practice Manager Global Facility for Disaster Reduction and Recovery (GFDRR)

For more details

Dr. Robert J. Budnitz Staff Scientist (retired) Lawrence Berkeley National Laboratory, University of California, USA

For more details

Dr. Amod Mani Dixit General Secretary National Society for Earthquake Technology (NSET), Nepal

For more details

By continuing or browse this website, you accept cookies which are used to offer a personalized experience on our website, generate statistics and realize advertising or social network tracking. Find out more about <u>Cookie policy</u>. You can change your cookie settings any time. ACCEPT

Professor Tracy Kijewski-Correa

Professor The University of Notre Dame, USA

For more details

Invited Lectures

*The speakers and the lecture materials may change without prior notice.

Professor Xilin LU

Professor

Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, China

For more details

Professor Gregory G. Deierlein John A Blume Professor of Engineering,

Stanford University, USA

For more details

Dr. Jun-ichi Hoshikuma

Center for Advanced Engineering Structural Assessment and Research, Public Works Research Institute, Japan

For more details

Professor Muneo Hori

Director General Center for Mathematical Science and Advanced Technology, JAMSTEC, Japan

For more details

By continuing or browse this website, you accept cookies which are used to offer a personalized experience on our website, generate statistics and realize advertising or social network tracking. Find out more about <u>Cookie policy</u>. You can change your cookie settings any time. ACCEPT

Professor Mustafa Erdik

Kandilli Observatory and Earthquake Research Institute, Bogazici University, Turkey

For more details

Professor

Professor Misko Cubrinovski Professor University of Canterbury, New Zealand

For more details

Professor Satoshi Yamada Professor The University of Tokyo, Japan

For more details

Professor Fabrizio Paolacci Professor of Structural Engineering, Roma Tre University, Italy

For more details

Conference Style

There have been some changes to the Presentation Style as follows.

- 1. Oral presenters who cannot attend the conference on-site can also make their presentation in real time by on-line.
- 2. For Poster Presentations, 17WCEE will not conduct an SOP (Short Oral Presentation) on-site, but instead, we are planning to hold SOP on-line (Flash Talk) in few minutes for each presentation. Additional information will be given

By continuing or browse this website, you accept cookies which are used to offer a personalized experience on our website, generate statistics and realize advertising or social network tracking. Find out more about <u>Cookie policy</u>. ACCEPT

You can change your cookie settings any time.

PROCEEDINGS OF THE SEVENTEENTH WORLD CONFERENCE ON EARTHQUAKE ENGINEERING JAPAN 2021

Welcome	Search for articles of 17WCEE only Title :
Invitation	Author :
Sponsors	Search Reset
Committees	

AUTHOR	TITLE
YINGYANG LIU, ZHIXU HAN	EXPERIMENTAL STUDY ON THE MECHANICAL PERFORMANCE OF DOUGONG IN MAHAVIRA HALL OF HUISHAN TEMPLE
HAZIM YILMAZ, AMAR RAHIMI	CORRELATION STUDY ON STRUCTURAL RESPONSE AND GROUND MOTION INTENSITY PARAMETERS
PURSHOTTAM SANKHLA	DYNAMIC ANALYSIS AND BEHAVIOR OF INFILLED FRAMES UNDER SEISMIC LOADING
ANA SAUCA, NILS MORTENSEN, ANDERS DRUSTRUP, GIUSEPPE ABBIATI	DEVELOPMENT OF A THERMOMECHANICAL HYBRID TESTING PLATFORM FOR FIRE FOLLOWING EARTHQUAKE SIMULATIONS
RYO WAKAMATSU, TOMOHISA MUKAI, HIDEYUKI KINUGASA, YORIYUKI MATSUDA	ANALYTICAL STUDY OF RC BUILDING WITH SOFT FIRST STORY DESIGNED AFTER 1981 AND DAMAGED IN THE 2016 KUMAMOTO EARTHQUAKE
HANXU ZHOU, AILAN CHE	REGIONAL SEISMIC LANDSLIDE ASSESSMENT BASING ON NEWMARK MODEL CONSIDERING SITE AMPLIFICATION EFFECT
HIROSHI NAKAZAWA, TOMOHIRO ISHIZAWA, TORU DANJO, YUTAKA SAWADA, YASUHIRO ONOUE	MODEL TESTS ON DEFORMATION AND COLLAPSE PROCESS OF SMALL EARTH DAM DUE TO EARTHQUAKE AND RAINFALL
RYOSUKE TAKAHASHI, TOMOHISA MUKAI, YUSUKE MAIDA, HIDEYUKI KINUGASA	EXPERIMENTAL TEST FOR STRUCTURAL PERFORMANCE EVALUATION OF R/C MEMBERS ASSUMING RENOVATION
ASIMINA ATHANATOPOULOU KYRIAKOU, ALEXIOS PAPASOTIRIOU, KONSTANTINOS KOSTINAKIS	SPATIAL AND TEMPORAL VARIATION IN THE CORRELATION OF SEISMIC RESPONSE WITH THE SPECTRAL ACCELERATION
JICHAO LI, TAO WANG, QINGXUE SHANG	PROBABILITY-BASED SEISMIC RESILIENCE ASSESSMENT METHOD FOR SUBSTATION SYSTEMS
CHEN HUANG, KARIM TARBALI, CARMINE GALASSO	VALIDATION OF GROUND-MOTION SIMULATIONS THROUGH SPATIAL ANALYSIS OF INELASTIC SPECTRAL DISPLACEMENT

ASIMINA ATHANATOPOULOU KYRIAKOU, KONSTANTINOS KOSTINAKIS	INELASTIC SEISMIC RESPONSE OF MULTISTOREY R/C BUILDINGS DESIGNED ON THE BASIS OF LINEAR TIME HISTORY ANALYSIS
FRANCISCO HERNANDEZ, RODRIGO ASTROZA, RAMIRO BAZAEZ, CESAR PASTEN, FELIPE OCHOA-CORNEJO	NUMERICAL AND EXPERIMENTAL INVESTIGATION OF A CHILEAN BRIDGE-SOIL SYSTEM
HESHENG TANG, XUEYUAN GUO	TIME-VARIANT RELIABILITY-BASED DESIGN OPTIMIZATION OF TUNED VISCOUS MASS DAMPER UNDER NONSTATIONARY SEISMIC EXCITATION UTILIZING KRIGING SURROGATE MODEL
FRANCISCO HERNANDEZ, RODRIGO ASTROZA, JUAN FELIPE BELTRÁN, LEONARDO BELMAR	A DAMPER-SPRING DEVICE FOR SEISMIC ENERGY DISSIPATION IN BUILDINGS
JUANA GRESIA, SANDRA SANTA CRUZ	RELIABILITY ESTIMATION OF INCREMENTAL RETROFITTED STRUCTURES CONSIDERING CUMULATIVE SEISMIC DAMAGES
JINKE LI, XUEFENG ZHAO	RESEARCH ON QUICK AFTERSHOCK STRUCTURAL MONITORING AND DAMAGE EVALUATION TECHNIQUE USING SMARTPHONE
PING-HSIUNG WANG, KUO- CHUN CHANG, HSIAO-HUI HUNG, WC. CHENG	SEISMIC EVALUATION OF REINFORCED CONCRETE BRIDGES USING CAPACITY-BASED INELASTIC DISPLCAEMENT SPECTRA
JUANA GRESIA, LUIS QUIROZ	EVALUATION OF THE SEISMIC PERFORMANCE OF RC DUAL SYSTEM BUILDINGS USING THE PERUVIAN SEISMIC CODE E.030-2018
LEONARDO M MASSONE, DIEGO ACEITUNO, JULIÁN CARRILLO	<u>CUMULATIVE DAMAGE IN RC BUILDINGS – THE CASE OF THE 2017 PUEBLA-MORELOS</u> EARTHQUAKE
LEONARDO M MASSONE, CARLOS LÓPEZ, KRISTIJAN KOLOZVARI	EFFICIENT SHEAR-FLEXURE INTERACTION MODEL FOR REINFORCED CONCRETE WALLS
SHIH-LIN HUNG, XUAN-ZHI CHEN, CHING-YUN KAO	LOCATING DAMAGE TO BUILDINGS USING A DISPLACEMENT FREQUENCY RESPONSE FUNCTION-BASED APPROACH
LUIS BOZZO, JUNIOR RAMIREZ, JESUS BAIRAN, GUILLERMO BOZZO, EDINSON MUÑOZ	PRECAST BUILDING EQUIPPED WITH SLB SEISMIC DEVICES
ABU HENA MD MUNTASIR BILLAH, BORISLAV TODOROV	IDENTIFYING SEISMIC PERFORMANCE LIMIT STATES OF CIRCULAR CONCRETE BRIDGE PIERS USING MACHINE LEARNING TECHNIQUES
ABU HENA MD MUNTASIR BILLAH, BORISLAV TODOROV	MAINSHOCK-AFTERSHOCK DAMAGE ASSESSMENT OF CONCRETE BRIDGE REINFORCED WITH SHAPE MEMORY ALLOY REBAR
SHENG LI, YONGFENG CHENG, ZHICHENG LU, SEN LIN	EARTHQUAKE MONITORING, EARLY WARNING AND DAMAGE ASSESSMENT SYSTEM FOR ELECTRICAL SUBSTATIONS
BO WANG, ZHE LI, TAO WU, BOQUAN LIU	STUDY ON QUASI-STATIC LOADING PROTOCOL CONSIDERING THE ACTION CHARACTERISTICS OF LONG-PERIOD GROUND MOTIONS
KONSTANTINOS THEODOROS TSALOUCHIDIS, NENAD BIJELI?, CHRISTOPH ADAM, LUKAS MOSCHEN	IDA-BASED SEISMIC COLLAPSE PATTERNS AND THEIR PREDICTABILITY BY GENERALIZED LINEAR MODELS
SASAN BABAEI, PANAM ZARFAM, ABDOLREZA SARVGHAD MOGHADAM	PROBABILISTIC AND DETERMINISTIC SEMI-ACTIVE CONTROL STRATEGIES FOR ADJACENT BUILDINGS CONNECTED BY MR DAMPERS
EBER ALBERTO GODINEZ- DOMINGUEZ, ARTURO TENA- COLUNGA, HANS ISRAEL ARCHUNDIA-ARANDA, ALONSO GÓMEZ-BERNAL, RAÚL PAVEL RUÍZ-TORRES, JOSÉ LUIS ESCAMILLA-CRUZ	<u>STRUCTURAL DAMAGE IN HOUSING AND APARTMENT BUILDINGS DURING THE</u> <u>SEPTEMBER 7, 2017 TEHUANTEPEC EARTHQUAKE</u>
YUAN-SEN YANG	3-D DISPLACEMENT MEASUREMENT IN LARGE STRUCTURAL TESTS USING VIDEO
TAO SHENG, GAN-BIN LIU, WEI- XING SHI, YE ZHOU	EXPERIMENTAL STUDIES ON A NEW ISOLATOR FOR BUILDINGS NEAR METRO TRANSPORTATION AND IN SEISMIC AREAS

ZAND-PARSA	
ABHISHEK JAIN, DIPTI RANJAN SAHOO, ARVIND KUMAR JAIN	NUMERICAL INVESTIGATION ON DETAILING OF SRC-RC TRANSFER COLUMNS FOR ENHANCED SEISMIC RESISTANCE
MASARU KIKUCHI, MINEO TAKAYAMA	SCALE EFFECT ON MECHANICAL BEHAVIOR OF LEAD RUBBER BEARINGS FOR SEISMIC
MARCO STUPAZZINI, MARIA INFANTINO, ALEXANDER ALLMANN, ROBERTO PAOLUCCI	PHYSICS-BASED PROBABILISTIC SEISMIC HAZARD AND PROBABILSITIC RISK ASSESSMENT IN LARGE URBAN AREAS
SHARAD LAXMANRAO GHODKE, SHIV PRAKASH, ASHISH RAMDASPANT AKHARE, RADHEY SHYAM JANGID	PERFORMANCE OF DAMAGE-RESISTANT SELF-CENTERING AND DAMAGE-FREE DEVICE AGAINST MASSIVE EARTHQUAKES
ANTONIO SILVA, LUIS MACEDO, RICARDO MONTEIRO, JOSÉ MIGUEL CASTRO	RISK ASSESSMENT OF EC8-COMPLIANT STEEL BUILDINGS
HUI MENG ZHOU	APPLICATION OF ADAPTIVE TIME DELAY COMPENSATION COMBINED WITH ROBUST LINEAR QUADRATIC GAUSS IN VEHICLE-BRIDGE COUPLING REAL-TIME HYBRID SIMULATION
KEVIN WONG	IDENTIFICATION OF GEOMETRIC NONLINEARITY FORMULATIONS AND THE INFLUENCES ON STRUCTURAL DYNAMIC RESPONSES
OMAR A. SEDIEK, SHERIF EL- TAWIL, JASON MCCORMICK	IMPACT OF EARTHQUAKE-INDUCED DEBRIS ON THE SEISMIC RESILIENCE OF ROAD NETWORKS
OMAR A. SEDIEK, SHERIF EL- TAWIL, JASON MCCORMICK	INTEGRATING HOUSEHOLD DECISIONS IN QUANTIFYING THE SEISMIC RESILIENCE OF COMMUNITIES
ROLANDO TORRES, OTTO HURTARTE, ANNA CABALLEROS, CHRISTIAN RAMÍREZ, GRACIELA OLMOS, RUTH VASQUEZ, ALEJANDRA REICHE, VICTOR TZORÍN	GUATEMALAN SEISMOLOGICAL SERVICE: BEYOND DATA ACQUISITION AND SEISMIC MONITORING
DIEGO ARMANDO MEDINA DEZA, FIDEL COPA PINEDA, JUAN CARLOS COPA PINEDA, CHRISTIAN MALAGA CHUQUITAYPE	STRUCTURAL ASSESSMENT OF REINFORCED CONCRETE BEAMS RETROFITTED WITH CARBON FIBERS AND STEEL PLANKS SUBJECTED TO BENDING
PAUL RICHARDS RICHARDS	EXPERIMENTAL PERFORMANCE OF STEEL MOMENT FRAME CONNECTIONS WITH REPLACEABE SHEAR FUSES
XINGCHEN CHEN, HIROSHI TAGAWA	ROCKING-DELAYED SPINE SYSTEM FOR IMPROVING SEISMIC PERFORMANCE OF BUILDING STRUCTURES
NING WANG, XIAOJUN LI, AIWEN LIU	SEISMIC ANALYSIS FOR BRIDGES CROSSING ACTIVE FAULT-RAPTURE ZONES
ANA ISABEL SARKIS FERNANDEZ, TIMOTHY SULLIVAN, EMANUELE BRUNESI, ROBERTO NASCIMBENE	NUMERICAL SIMULATION OF THE SEISMIC BEHAVIOR OF PRECAST PRE-STRESSED HOLLOW-CORE FLOOR SEATING CONNECTIONS
YOSHIHIRO YAMAZAKI, KENGO KANDA, HIROYASU SAKATA	STUDY ON FATIGUE BEHAVIOR OF TIMBER SHEAR WALLS SUBJECTED TO REPEATED
BRANDT SAXEY, ZAC VIDMAR, MATHEW REYNOLDS, CHAO- HSIEN LI, CHIA-MING UANG	A PREDICTIVE LOW-CYCLE FATIGUE MODEL FOR BUCKLING RESTRAINED BRACES
SAORI OGASAWARA, KATSUHISA KANDA, YOSHITAKA SUZUKI	DAMAGE INVESTIGATION OF NON-STRUCTURAL COMPONENTS IN BUILDINGS WITH SHM SYSTEM IN THE 2018 OSAKA EARTHQUAKE
PANNA LAL KURMI, PUTUL HALDAR	COMPARATIVE STUDY OF SEISMIC FRAGILITY OF INDIAN RC BUILDINGS DESIGNED WITH OLD AND REVISED SEISMIC CODE
CHUNG-CHAN HUNG, KUO-WEI WEN	INVESTIGATION OF SHEAR STRENGTH OF ULTRA-HIGH PERFORMANCE CONCRETE BEAMS WITHOUT STIRRUP
TINGYU HSU, CHUN PING NIEH, CHENG YAN LIU, YI WEN KE, YO MING HSIEH	EQ ALERT: AN APP OF ON-SITE EARTHQUAKE EARLY WARNING

BING-RU WU	SEISMIC VULNERABILITY ANALYSIS OF EXPOSURES BY MESH-BASED SCENARIO SIMULATION AND APPLICATION ON POLICY SUPPORT
ABDELGHANI MESLEM, MARIO MARTINELLI, ELMER RUIGROK, PIERRE GEHL, REMY BOSSU, BENEDIKT HALLDÓRSSON, BARBARA BORZI, JOHN DOUGLAS, JOCHEN SCHWARZ, SERGIO MOLINA, KEITH JONES, FRANCESCO FINAZZI, CARMINE GALASSO, FLORIN BALAN, MASSIMILIANO CHERSICH, BERND WEBE	<u>TOWARDS MORE EARTHQUAKE-RESILIENT URBAN SOCIETIES THROUGH A MULTI-</u> <u>SENSOR-BASED INFORMATION SYSTEM ENABLING EARTHQUAKE FORECASTING, EARLY</u> <u>WARNING AND RAPID RESPONSE ACTIONS</u>
SHAHRZAD DASTMALCHI, HENRY V BURTON	RELIABILITY-BASED DESIGN OF FORCE-CONTROLLED COMPONENTS IN ROCKING STEEL BRACED FRAMES
MARCO BAIGUERA, TIZIANA ROSSETTO, IAN NICOL ROBERTSON	TSUNAMI DESIGN USING NON-LINEAR PUSH-OVER ANALYSIS
MICHEL BRUNEAU, HOMERO CARRION-CABRERA	BUCKLING-RESTRAINED BRACES IN BI-DIRECTIONAL DUCTILE DIAPHRAGMS OF MULTI- SPAN BRIDGES
STUART J OLIVER, LAURA A. WHITEHURST, HAMISH S. MCKENZIE, ANNA E. PHILPOTT	SEISMIC STRENGTHENING AND UPLIFT OF THE 1904 WELLINGTON TOWN HALL
MIKE FAIRHURST, ARMIN BEBAMZADEH, CARLOS E VENTURA	DEVELOPMENT OF FRAGILITY FUNCTIONS FOR RC CONCRETE STRUCTURES CONSIDERING THE EFFECT OF GROUND MOTION DURATION
Y. L. MO, HSUAN-WEN HUANG, JIAJI WANG, FY. MENQ, KENNETH H. STOKOE	FULL-SCALE FIELD TESTS ON 1D PERIODIC BARRIERS
KEIICHIRO KONO, KAZUKI TAJIMA, KAZUHIRO NAGANUMA	TORSIONAL RESPONSE EVALUATION METHOD FOR REINFORCED CONCRETE FRAMES BASED ON 3D NONLINEAR FINITE ELEMENT ANALYSIS
KAZUHISA SHIMADA	<u>A COMMUNITY-LED SUPPORT FOR TSUNAMI SURVIVORS: LOCAL RESILIENCE IN THE</u> CASES OF 2011 TOHOKU EARTHQUAKE
MASATAKA SHIGA, TAKASHI KIYOTA, T. EGAWA	CORRELATION BETWEEN LIQUEFACTION RESISTANCE AND SHEAR WAVE VELOCITY FOR VOLCANIC COARSE-GRAINED SOIL
MOTOCHIKA ICHIKAWA, KAZUKI TAJIMA, KAZUHIRO NAGANUMA	REDEFINED SYSTEM FOR SEISMIC DAMAGE EVALUATION OF REINFORCED CONCRETE BUILDINGS
RUI HASUIKE, KAZUKI TAJIMA, KAZUHIRO NAGANUMA	MECHANISM OF STORY COLLAPSE CAUSED BY LOCAL DAMAGE TO REINFORCED CONCRETE FRAME
XIAOHUA LI, MASAHIRO KURATA	ESTIMATING SEISMIC DAMAGE OF COLUMN BASES IN STEEL MOMENT-RESISTING FRAMES USING MODAL DATA
DWI DINARIANA, SUWITO SUWITO, HARI NUGRAHA NURJAMAN, BINSAR HARIANDJA, BISMA STANIARTO, GALIH WAHYUHADI SAPUTRO, ANGGA DITYA KUSUMA	<u>EARTHQUAKE PERFORMANCE ASSESSMENT OF RENTAL LOW-COST HOUSING FLASTS IN</u> LOMBOK, INDONESIA
SUWITO SUWITO, DWI DINARIANA, HARI NUGRAHA NURJAMAN, BINSAR HARIANDJA, BISMA STANIARTO, GALIH WAHYUHADI SAPUTRO, ANGGA DITYA KUSUMA	DAMAGE ASSESSMENT OF RENTAL LOW-COST HOUSING FLATS IN CENTRAL SULAWESI INDONESIA AFFECTED BY PALU EARTHQUAKE
DAVID MCCALLEN, ANDERS PETERSSON, ARTHUR RODGERS, MAMUN MIAH, ARBEN PITARKA, FLORIANA PETRONE, HOUJUN TANG	THE EARTHQUAKE SIMULATION(EQSIM) FRAMEWORK FOR PHYSICS-BASED FAULT-TO- STRUCTURE SIMULATIONS
AKIHITO OTANI, SATORU KAI	LOAD CONDITION IN RESPONSE OF SDOF SYSTEM
ANJAN DUTTA, A. LEGO, S. K. DEB	SEISMIC VULNERABILITY ASSESSMENT OF INTEGRAL ABUTMENT BRIDGE WITH AND WITHOUT SLEEVED PILES

FILIPPO GATTI, DAVID CASTRO- CRUZ, FERNANDO LOPEZ- CABALLERO, DIDIER CLOUTEAU	<u>SEISMIC SOURCE-TO-STRUCTURE ANALYSIS OF THE KASHIWAZAKI-KARIWA NUCLEAR</u> <u>POWER PLANT (JAPAN).</u>
HAO WU, YING ZHOU	PARAMETRIC STUDY ON SEISMIC PERFORMANCE OF SELF-CENTERING PRECAST CONCRETE WALLS WITH MULTIPLE ROCKING JOINTS
MOHAMMAD KHOSRAVI, SHAHABEDDIN ZAREGARIZI, MEHRAN POURAKBAR, ABBAS SOROUSH	DYNAMIC CENTRIFUGE TEST OF AN EMBANKMENT UNDERLAIN A LIQUIFIABLE SOIL AND ISOLATED SOIL-CEMENT COLUMNS
ADARSH S, KANTA PRAJAPAT, SAMIT RAY-CHAUDHURI	HETEROGENEOUS MULTI-SENSOR DATA FUSION FOR POST- EARTHQUAKE STRUCTURAL HEALTH ASSESSMENT
FRANCOIS DALLAIRE, XAVIER ROBERT VEILLETTE, MÉLISSA BARRIÈRE, NATHALIE ROY, JEAN PROULX	<u>COMPARISON OF DAMPING MODIFICATION FACTOR AND METHODS OF ANALYSIS FOR</u> <u>HIGHWAY BRIDGES EARTHQUAKE RESPONSE</u>
SANDRA HYDE, RYAN COLKER	NATIONAL APPROACH TO ENHANCING RESILIENCE
YUSUKE TOSAUCHI, RYO NAKANO, SHUNSUKE NARUSE, SUSUMU KONO, TAKU OBARA, KATSUMI KOBAYASHI, TAKESHI FUKUDA, YASUHIRO GUNJI, TOSHIAKI ARAI	EXPERIMENTAL STUDY ON MOMENT RESISTING MECHANISM AT PILE AND PILE CAP INTERFACE #2: MOMENT CAPACITY FORMULATION BASED ON FAILURE MECHANISM
ROBERT JAY NIMER PANALIGAN, TATSUYA AZUHATA, YOSHITERU MOMO, YASUHIRO KAWAMATA, AKIHIRO TAKAHASHI, JUN YAMAZAKI	EARTHQUAKE PERFORMANCE EVALUATION OF A TYPICAL BRIDGE STRUCTURE DESIGN BY FORCE-BASED DESIGN METHOD IN PHILIPPINES
KOICHI KAJIWARA, MANABU YAMADA, EIJI SATO, TOSHIHIKO HORIUCHI, HIDEO KASE, MASAKI HAYATSU, TETSUYA TOMIZAWA, MASASHI YASUDA	VISION AND CURRENT STATUS IN DEVELOPMENT OF THREE-DIMENSIONAL SEISMIC ISOLATION SYSTEM BY FLUID LEVITATION
GONZALO MUNOZ-ARRIAGADA, LEONARDO MASSONE, FABIÁN ROJAS	INFLUENCE OF CENTRAL OPENINGS AT THE BASE IN FLEXURAL RC WALLS
KAZUHIKO HIRAMOTO, TAICHI MATSUOKA	ACTIVE PREVIEW VIBRATION CONTROL WITH THE ESTIMATED FUTURE SEISMIC WAVEFORM GENERATED BY AN AI-BASED ESTIMATION SYSTEM
MD. KAMRUZZAMAN, MATSUTARO SEKI	SEISMIC VULNERABILITY AND RETROFIT OF SOFT FIRST STORY RC BUILDINGS DESIGNED BY BARE FRAME ANALYSIS IN BANGLADESH
NOBUO MUROTA, SHIGENOBU SUZUKI, TAKAHIRO MORI, KENJI WAKISHIMA, BAHADIR SADAN, CUNEYT TUZUN, MUSTAFA ERDIK, SINAN AKKAR, HALUK SUCUOGLU, FATIH SUTCU	<u>A STUDY ON SEISMIC ISOLATION SYSTEM USING HIGH-DAMPING RUBBER BEARINGS FOR RESIDENTIAL BUILDINGS IN TURKEY</u>
YOHSUKE KAWAMATA, TAKEHIRO TAKAHASHI, TAKUYA NAGAE	DAMAGE MECHANISM OF PVC DRAINAGE PIPE CONNECTED TO HOUSE WITH HIGH SESMIC PERFORMANCE
KAZUHIRO HAYASHI, YUICHI MIYACHI, YOSHIHIRO KIMURA, SHUJI TAMURA, TAIKI SAITO	CENTRIFUGE MODEL TEST ON THE DYNAMIC BUCKLING BEHAVIOR OF RC SLENDER PILE IN SATURATED GROUND
MIZUO INUKAI	RESPONSE VALUES BY MDOF USING ROCKING FREE MOTION AND COUPLED SYSTEM
SHYH-JIANN HWANG	CURRENT SEISMIC RETROFITTING PROGRAMS OF SCHOOL AND RESIDENTIAL BUILDINGS IN TAIWAN
YUTO SURUKI, KEIGO IKEDA, KOTARO MATSUTAKE, HIROYUKI NAKAHARA	SHEARING CAPACITY OF SQUARE CONCRETE-FILLED STEEL TUBULAR COLUMNS
YUJI KOETAKA, RYUTO MURAKAMI	DEGRADATION BEHAVIOR DUE TO LOCAL BUCKLING AND/OR FRACTURE OF H-SHAPED STEEL BEAM WITH AXIAL DEFORMATION RESTRAINED
SEIICHIRO FUKUSHIMA, AKIRA SATODA, MASAMI OSHIMA	SEISMIC RISK EVALUATION OF PLANT SITE USING EARTHQUAKE-TYPE DEPENDENT FRAGILITY CURVE

CHIH-HAO HSU, SIAO-SYUN KE, MIN-CHENG TENG, CHIA-YING LIN	POST-EARTHQUAKE STATUS OF LIFELINE INFRASTRUCTURE BASED ON INTERDEPENDENCY EFFECTS IN SCIENCE PARK, TAIWAN
TAKUYA SUZUKI	ROTATIONAL INPUT MOTION IDENTIFICATION IN NONLINEAR STRUCTURE MODEL
SATORU FUJII, TAKESHI FUJIMORI	CHARACTERISTICS OF INPUT MOTION FOR CASTLE
XUEHUA ZHANG, XIAOQING WANG, XIAOXIA DU, JUNYAN LAI	BUILDING DAMAGE DETECTION USING POST-SEISMIC UAV DATA
AKIHIKO OBATA, TETSUYA NISHIDA	DISTRIBUTION CHARACTERISTICS OF WAVE PRESSURE ON BUILDINGS SUBJECTED TO TSUNAMI LOAD
RYOSUKE AOTA	CONSIDERATION ON COOPERATION SYSTEM FOR DISASTER RESPONSE INITIATED BY LOCAL GOVERNMENTS IN JAPAN
TOSHIHIKO KIYOHARA, AKIRA TASAI, KUNIYOSHI SUGIMOTO	A STUDY ON BAR ARRANGEMENT DETAILS OF RC L-SHAPED BEAM COLUMN JOINTS
NOBUO MASAKI, MITSURU MIYAZAKI, KAZUHIKO KASAI	CURRENT STATUS OF PERFORMANCE VERIFICATION OF SEISMIC ISOLATION AND DAMPING DEVICES
DEYUAN TIAN, RUSHAN LIU, ZHI ZHU	A STYDY ON FAST CALCULATION METHOD OF SEISMIC VULNERABILITY OF BUILDING STRUCTURE
JIARUI WU, DAIKI SATO	DYNAMIC CHARACTERISTICS OF SEISMICALLY ISOLATED HIGH-RISE BUILDING BASED ON SEISMIC RESPONSE RECORDS
HAN SEON LEE, HUILING PIAO, RUTH ALI ABEGAZ	EVALUATION OF ACCIDENTAL TORSION OF TORSIONALLY-BALANCED BUILDINGS USING THE RESISTANCE ECCENTRICITY
MASATO SAKURAI, TETSUYA NISHIDA	POST PEAK SIMULATION OF RC SHEAR WALLS WITH OPENINGS BASED ON NON-LINEAR FE ANALYSIS
JYOTI LAMSAL, KOICHI KUSUNOKI, MATSUTARO SEKI, TATSUYA AZUHATA	<u>SEISMIC RETROFIT OF AN EXISTING RESIDENTIAL BUILDING IN NEPAL TO</u> FUNCTIONALIZE AS A HOSPITAL USING FERROCEMENT
RYO INOUE, TAKURO MORI, KOTARO SUMIDA, HIROSHI ISODA, KEI TANAKA, TOSHIAKI SATO	<u>STATUS OF WOODEN HOUSES IN MASHIKI TOWN TWO YEARS AFTER THE 2016</u> KUMAMOTO EARTHQUAKES
HOLGER LOVON, VITOR SILVA, ROMEU VICENTE, TIAGO FERREIRA	INCORPORATING EPISTEMIC AND ALEATORY UNCERTAINTIES IN FRAGILITY MODELLING OF MASONRY STRUCTURES
JOSEPH KUBIN, DANYAL KUBIN, UGURCAN OZCAMUR, ILKER ALI ILIS, GOKSENIN FEROGLU, BENGU ELCIK EROL, SELCAN KAAN ACAREL, MERVE YALCIN, OZGE YILDIRIM	<u>SEISMIC ISOLATION OF A DATA CENTER BUILDING: HYBRID SYSTEM WITH CSS, LRB AND FVD</u>
TED CROSS, FLAVIA DE LUCA, RAFFAELE DE RISI	VALIDATION OF MACRO-MODELLING AND EQUIVALENT FRAME METHODOLOGY WITH EXPERIMENTAL DATA
JOSEPH KUBIN, DANYAL KUBIN, GOKSENIN FEROGLU, HALUK SUCUOGLU, ILKER ALI ILIS, UGURCAN OZCAMUR, ILKER HAKKI OZDEM, SINEM YALCIN	RETROFITTING OF A BRIDGE FORM HISTORICAL STATION USING SEISMIC ISOLATION
GIUSEPPE ABBIATI, STEFANO MARELLI	SEQUENTIAL EXPERIMENTAL DESIGN OF HYBRID SIMULATIONS FOR BAYESIAN CALIBRATION OF COMPUTATIONAL SIMULATORS
AHSANA PARAMMAL VATTERI, DINA D'AYALA, PIERRE GEHL	BAYESIAN NETWORKS FOR SEISMIC VULNERABILITY ASSESSMENT OF CONFINED MASONRY SCHOOL SYSTEMS
LIDIJA KRSTEVSKA	SEISMIC TESTING OF NON-STRUCTURAL SYSTEMS
HAMOOD ALWASHALI, DEBASISH SEN, MASAKI MAEDA, MATSUTARO SEKI	ADVANTAGES AND LIMITATIONS OF RETROFITTING MASONRY INFILLED RC FRAMES BY FERRO-CEMENT BASED ON EXPERIMENTAL OBSERVATIONS
HAMOOD ALWASHALI, JINGYUE SUN, AHMED GHAZI ALJUHMANI, ALEKSEY SHEGAY, MASAKI	EXPERIMENTAL STUDY ON RESIDUAL SEISMIC CAPACITY OF RC SQUAT WALLS

3/14/24, 5:48 AM	17WCEE
MAEDA, YOSHIHIRO OGATA, NAOYUKI AIZAWA	
GIOVANNI MUCIACCIA, GIUSEPPE DI NUNZIO	CYCLIC BEHAVIOR OF SCREWED HEAD ANCHOR SYSTEM FOR APPLICATIONS IN NUCLEAR POWER PLANTS
YESIM BIRO, BILGE SIYAHI, BULENT AKBAS	THE SPECTRAL DECAY PARAMETER K (KAPPA) FOR HARD ROCK STRONG GROUND MOTION STATIONS IN TURKEY
MANISH KUMAR, SUJIT V MATALE, DURGESH C RAI	INFLUENCE OF PERIMETER SUPPORTS ON THE SEISMIC RESPONSE OF PLASTERBOARD SUSPENDED CEILING SYSTEMS
MARIA CAMILA HOYOS, ANDRÉS FELIPE HERNÁNDEZ	HOW UNCERTAINTIES AND ASSUMPTIONS IN SEISMIC RISK ANALYSIS AFFECT THE DECISION-MAKER'S RISK PERCEPTION
KENJI MORI, HITOSHI MUTA, YASUKI OHTORI	APPLICATION OF INTERACTION MODEL IMPACTING ON ACCIDENTS CAUSED BY EARTHQUAKE IN NUCLEAR FACILITIES
DIMITRIS PITILAKIS, CHRISTOS PETRIDIS, AIKATERINI KOLITSIDAKI, APOSTOLIA BADRALEXI	<u>CITY-SCALE EARTHQUAKE VULNERABILITY ASSESSMENT INCLUDING NONLINEAR SOIL-</u> <u>STRUCTURE INTERACTION</u>
SIAMAK SATTAR, MIKE MAHONEY, RYAN KERSTING	FUNCTIONAL RECOVERY OF THE BUILT ENVIRONMENT AND CRITICAL INFRASTRUCTURE
ROHIT KUMAR ADHIKARI, DINA D'AYALA, ALASTAIR NORRIS	SEISMIC PERFORMANCE EVALUATION OF THE EXISTING AND RETROFITTED STONE MASONRY HOUSES IN NEPAL
DURGESH C RAI, PARUL SRIVASTAVA	SEISMIC FRAGILITY ANALYSIS OF C-BENT PIERS IN METRO VIADUCTS
FELIPE RIVERA, TIZIANA ROSSETTO, JOHN TWIGG	ASSESSING EARTHQUAKE RISK EVOLUTION FROM A PROCEDURAL JUSTICE PERSPECTIVE
AGUSTIN BERTERO, RAUL BERTERO, FILIP FILIPPOU	DEMAND-ORIENTED GROUND MOTION SELECTION USING NONLINEAR PREDICTORS OF RESPONSE
SERGIO LAGOMARSINO, STEFANIA DEGLI ABBATI, SERENA CATTARI	EFFECTS OF THE VERTICAL COMPONENT ON THE SEISMIC RESPONSE OF URM BUILDINGS
RICKY BAHERAMSJAH, ABDULBAR MANSOER, H HARINTO, HARI NURJAMAN, MASYHUR IRSYAM, M RIDWAN, L FAIZAL, H LATIEF, BINSAR HARIANDJA, SUWITO SUWITO, DWI DINARIANA	DEVELOPMENT OF EARTHQUAKE AND TSUNAMI DISASTER MITIGATION PLAN FOR MANDALIKA MOTOGP CIRCUIT IN LOMBOK
ANTONIO DI CESARE, FELICE CARLO PONZO, ALESSIO TELESCA, DOMENICO NIGRO, MARIA GABRIELLA CASTELLANO, SAMUELE INFANTI	INFLUENCE OF DCCSS BEARINGS OVER-STROKE AND BREAKAWAY ON THE SEISMIC RESPONSE OF ISOLATED BUILDINGS
SEBASTIAN CASTRO, FELIPE ARROSPIDE, ALAN POULOS, YOLANDA ALBERTO, JUAN CARLOS DE LA LLERA	CONSTRUCTION AND RISK EVALUATION OF A WATER SYSTEM NETWORK UNDER SEISMIC HAZARD IN CENTRAL CHILE
JEFFREY SALMON, CONSTANTIN CHRISTOPOULOS	NUMERICAL MODELLING OF GRAVITY-LOAD-DESIGNED REINFORCED CONCRETE COMPONENTS
VALENTINA PUTRINO, DINA D'AYALA	A MECHANICS-BASED PROCEDURE TO DETERMINE THE DAMAGE MECHANISM OF MASONRY WALLS SUBJECTED TO OUT-OF-PLANE HORIZONTAL LOADINGS
SERENA CATTARI, STEFANIA DEGLI ABBATI, SERGIO LAGOMARSINO	FLOOR SPECTRA VALIDATION THROUGH ACTUAL DATA FROM THE 2016/2017 EARTHQUAKE IN CENTRAL ITALY
SERENA CATTARI, DARIA OTTONELLI, FULVIO FRANCO, TOMMASO BUSCHIAZZO, ANDREA GUARDIANI	TOWARDS AN IMPROVED URBAN SEISMIC RESILIENCE: THE PILOT CASE STUDY OF SANREMO MUNICIPALITY
JUAN MANUEL MAYORAL, GILBERTO MOSQUEDA	SEISMIC INTERACTION AMONG ON-GROUND AND UNDERGROUND STRUCTURES
JUAN MANUEL MAYORAL, GILBERTO MOSQUEDA	SEISMIC INTERACTION OF INTERDEPENDENT SYSTEMS IN URBAN AREAS

ANDREW D SEN, CHARLES W ROEDER, DAWN E LEHMAN, JEFFREY W BERMAN	SEISMIC PERFORMANCE EVALUATION AND RETROFIT OF NONDUCTILE CONCENTRICALLY BRACED FRAMES
RICARDO ANTONIO HERRERA, NICOLAS LEIVA, LEONARDO MASSONE, JUAN FELIPE BELTRAN	NUMERICAL MODELLING OF THE PLASTIC HINGE OF GIRDERS IN STEEL MOMENT RESISTING FRAMES
SERGIO IGNACIO REYES, JOSÉ LUIS ALMAZÁN, JOSÉ IGNACIO COLOMBO, NICOLÁS TAPIA, JUAN CARLOS DE LA LLERA	SHAKING TABLE TESTS ON FULL-SCALE LEGGED LIQUID STORAGE TANKS PROTECTED WITH A VERTICAL-ROCKING ISOLATION SYSTEM
DHIRENDRA KUMAR PANDEY, SUDIB KUMAR MISHRA	AN ALTERNATIVE IMPLEMENTATION OF TUNED LIQUID DAMPER TO CONTROL SHORT PERIOD SHORT PERIOD SEISMIC VIBRATION OF STRUCTURES
MATTHEW SCOTT SPEICHER, KEVING WONG, JAZALYN DUKES	COLLAPSE ESTIMATES OF U.S. CODE-COMPLIANT STEEL FRAMES AND IMPLICATIONS FOR AN ASCE 41 ASSESSMENT
HONGJIE LI, JIANJING ZHANG	<u>TESTING EARTHQUAKE EARLY WARNING PARAMETERS, 2_PMAX, 2_C AND P_D, FOR RAPID MAGNITUDE ESTIMATION IN THE SICHUAN, CHINA REGION</u>
XIAO LIANG, SEYED OMID SAJEDI	BAYESIAN DAMAGE SEGMENTATION OF INSTRUMENTED BUILDINGS: OBTAINING PREDICTION UNCERTAINTY
XIAO LIANG, KAREEM ELTOUNY	A NONPARAMETRIC UNSUPERVISED LEARNING APPROACH FOR STRUCTURAL DAMAGE DETECTION
MOJTABA ANSARI, ALI KOMAK PANAH, MARYAM NAZARI	EXPERIMENTAL STUDY OF INFLUENCE OF SOIL-PILE-STRUCTURE INTERACTION ON DYNAMIC BEHAVIOR OF RC HIGH-RISE BUILDINGS
EDUARDO VEGA, LELLI VAN DEN EINDE	HOW CAN YOU ADVOCATE FOR SCHOOL EARTHQUAKE SAFETY IN YOUR COMMUNITY THROUGH CLASSROOM EDUCATION AND OUTREACH?
CARLOS A ARTETA, ANDRES TORREGROZA, DANIEL GASPAR, NORMAN A ABRAHAMSON	HOW MANY CMS' ARE ENOUGH FOR SEISMIC RESPONSE ASSESSMENT?
SAID ALI SAID, VAHID SADEGHIAN, DAVID LAU	MODELLING OF FRP-STRENGTHENED SHEAR WALLS WITH SPECIAL CONSIDERATION TO END-ANCHORAGE AND DEBONDING EFFECTS
CHRISTIAN ANTHONY FLORES CARRERAS, OMAR SEDIEK, JASON MCCORMICK, SHERIF EL- TAWIL	EVALUATION OF THE PERFORMANCE OF DEEP, SLENDER COLUMNS THROUGH THE USE OF SUB-ASSEMBLIES
EHSAN BAZARCHI, ALI DAVARAN, CHARLES-PHILIPPE LAMARCHE, NATHALIE ROY, SERGE PARENT, HASSAN FATEMI	NONLINEAR BEHAVIOUR OF HYBRID MODULAR STEEL STRUCTURES WITH REINFORCED CONCRETE SHEAR WALLS
JOHN D OSTERAAS	EARTHQUAKE ENGINEERING IN AN AGGRESSIVE LEGAL CLIMATE
ROBERT TREMBLAY, PAUL MOTTIER	A SIMPLE SELF-CENTERING BASE SHEAR FUSE FOR COST-EFFECTIVE CONTROLLED ROCKING STEEL BRACED FRAMES
AHMED ELGAMAL, ABDULLAH ALMUTAIRI, JINCHI LU	IMPLEMENTATION OF A MULTI-SPAN BRIDGE-GROUND PBEE FRAMEWORK FOR SEISMIC AND LIQUEFACTION SCENARIOS
MARIO LOPES, CARLOS SOUSA OLIVEIRA	EARTHQUAKE EARLY WARNING SYSTEM FOR PORTUGAL: FEASIBILITY AND PERSPECTIVE OF THE STAKEHOLDERS
KAZUMA INOUE, KEITA SAITOH, YUTA UMEYAMA, AKIRA IGARASHI, TAKAAKI IKEDA	ANALYSIS OF DIRECTIONALITY CONSIDERING PERIODIC CHARACTERISTICS FOR OVSERVED STRONG GROUND MOTIONS
TOSHIAKI YOKOI, TAKUMI HAYASHIDA, MUKUNDA BHATTARAI, TARA POKHAREL, SURESH SHRESTHA, CHINTAN TIMSINA, SUNITA BHATTARAI, RAJESH SHARMA, DINESH NEPALI	BROADBAND MICROTREMOR ARRAY EXPLORATION IN KATHMANDU VALLEY, NEPAL
TOSHIYUKI MASATSUKI, KATSUYA SATO, YOSHIYASU YAMANE, TAKENORI HIDA	SEISMIC BEHAVIOR OF NESTING RACK WITH STACKED CARDBOARDS BASED ON SHAKING TABLE TEST

ANDREW D SEN, JAKOB SUMEARLL, DAWN E LEHMAN, LAURA N LOWES	RETROSPECTIVE EVALUATION OF EARTHQUAKE-DAMAGED REINFORCED-CONCRETE BUILDINGS USING PRACTICAL METHODS
GONZALO MUNOZ-ARRIAGADA, RICHARD HENRY, KENNETH ELWOOD	EXPERIMENTAL STUDY OF DAMAGED REINFORCED CONCRETE WALLS REPAIRED USING SIMPLE TECHNIQUES
TAKAAKI TSUKADA, SATOKO GOTO, MASAMU MATSUMOTO, KOSEI YACHI, YOSHIKI TANAKA, YUHO KAWAMOTO, RYOSUKE IKEDA, YASUO NITTA	APPLICATION OF AUTOMATED DESIGN TOOL FOR FE MODELLED REINFORCED CONCRETE LINE ELEMENTS TO SEISMIC DESIGN
PHER ERROL BALDE QUINAY, RHOMMEL GRUTAS, CHRISTINE PROTACIO, IRAN BROTAMONTE	FEATURE: A SEISMIC RESPONSE ANALYSIS TOOL FOR URBAN AREAS IN THE PHILIPPINES
KHIN MYAT KYAW, KIMIRO MEGURO	NUMERICAL MODELING OF MID-RISE REINFORCED CONCRETE BUILDING INCORPORATION OF SOIL-STRUCTURE-INTERACTION FOR DIFFERENT SOIL CONDITIONS WITH AEM
HISASHI NAKAO, KOHEI EGUCHI, TOMOYA YONO, MICHIO OHSUMI	DAMAGE MECHANISM OF OKIRIHATA BRIDGE DUE TO KUMAMOTO EARTHQUAKE
MUNKHUNUR TOGTOKHBUYAN, TAGAWA HIROSHI, CHEN XINGCHEN	EXPERIMENTAL STUDY ON STEEL BEAM-TO-COLUMN JOINT STRENGTHENED BY BUCKLING-RESTRAINED KNEE BRACE USING STEEL BAR CORE
YASUKAZU IZAWA, YUTA KOYAMA, MASAHITO KOBAYASHI	SAFETY MARGIN EVALUATION BASED ON INCREMENTAL DYNAMIC ANALYSIS OF SEISMICALLY ISOLATED BUILDINGS
MIGUEL MEDALLA, DIEGO LOPEZ-GARCIA, FARZIN ZAREIAN	SEISMIC CHARACTERIZATION OF STEEL BUILDINGS SUBJECTED TO MEGATHRUST EARTHQUAKES
TOSHIHIKO HORIUCHI, KOICHI KAJIWARA, TAKUZO YAMASHITA, TAKASHI AOKI, EIJI SATO, MANABU YAMADA	EVALUATION FRAMEWORK OF DISASTER MITIGATION MEASURES FOR MAKING EARTHQUAKE-RESILIENT COMMUNITIES
MASAKATSU MIYAJIMA, RYOSUKE NOGUCHI	INFLUENCE ON DAMAGE TO LIFELINE ON PERFORMANCE OF HOSPITALS IN THE 2018 HOKKAIDO IBURI-TOBU EARTHQUAKE IN JAPAN
KENJIRO YAMAMOTO, SHANTHANU RAJASEKHARAN, KIMIRO MEGURO	STUDY ON MOISTURE EFFECTS ON MASONRY RETROFITTED WITH FIBER REINFORCED PAINT
RUIFU ZHANG, LI ZHANG, LIYU XIE, SONGTAO XUE	DYNAMIC EXPERIMENT AND ANALYTICAL RESEARCH OF A CRANK INERTER SYSTEM
YU BAO, DIMITRIOS KONSTANTINIDIS	EFFECT OF AN ADJACENT WALL ON THE OVERTURNING OF A SLIDING-ROCKING BLOCK SUBJECTED TO PULSE EXCITATION
MASAHIRO SHINODA, SUSUMU NAKAJIMA, KENJI WATANABE, SUSUMU NAKAMURA, IKUMASA YOSHIDA	SEISMIC FRAGILITY ESTIMATION OF GEOSYNTHETIC-REINFORCED EMBANKMENTS
SABINE LOOS, DAVID LALLEMANT, JAMIE MCCAUGHEY, NAMA BUDHATHOKI, FEROZ KHAN, RITIKA SINGH, JACK BAKER	BEYOND BUILDING DAMAGE: MODELING POST-DISASTER NEED
TAKAO NISHIZAWA, RYOTA SUEKUNI	OUTLINE OF STRUCTURAL DESIGN FOR KYOTO CITY HALL
GUIXIN ZHANG, BAITAO SUN	SEISMIC CAPABILITY OF BUILDING AND RISK ANALYSIS OF EARTHQUAKE DISASTER OF CHINESE MAINLAND
TIZIANO PEREA, JOSÉ ANTONIO SIFUENTES, GELACIO JUÁREZ- LUNA	STRUCTURAL ASSESSMENT OF STEEL BEAM-TO-COLUMN CONNECTIONS SUBJECTED TO CYCLIC LOADING BY NONLINEAR FINITE ELEMENT ANALYSIS
HAOWEN ZHENG, SHOICHI KISHIKI, NOBUHIKO TATSUMI, TAKANORI ISHIDA, YOSHINAO KONISHI	QUICK INSPECTION METHOD OF U-SHAPED STEEL DAMPERS BASED ON RESIDUAL DEFORMATION

KEN-ICHI FUJITA, HARUMI YASHIRO	EVALUATION OF HUMAN DAMAGE IN EVACUATION FROM TSUNAMI FOR A COMMON SCENARIO EARTHQUAKE
SATOSHI YAMAGAMI, HIDETAKA FUNAKI, YOSHIKI KOYAMA, HAJIME YAMAGIWA	DYNAMIC CHARACTERISTICS OF SEISMICALLY ISOLATED STRUCTURES IN MICROTREMOR
HARI NURJAMAN, AGUS WANTORO, YUDHI DHARMAWAN, JOSE RESTREPO, SUGENG WIJANTO, BINSAR HARIANDJA, LUTFI FAIZAL, SUWITO SUWITO, DWI DINARIANA	<u>USE OF VERTICALLY UNBONDED POST TENSIONED ON PRECAST CONCRETE WALL TO</u> COUNTERACT VERTICAL EARTHQUAKE
RICHARD CHRISTENSON, MUAMMER AVCI	BASE ISOLATION STUDIES USING REAL-TIME HYBRID SIMULATION AND FIXED BASED BUILDING SHAKE TABLE TESTS
KAZUHIRO KANEDA	INVESTIGATION OF LATERAL VISCOUS BOUNDARY IN TWO PHASE DYNAMIC ANALYSIS OF 3D IRREGULAR LAYER SYSTEM GROUND
LUIS MARTIN LAVADO DURAND, JORGE LUIS GALLARDO TAPIA, CLAUDIA MITIE HONMA	EXPERIMENTAL AND NUMERICAL ANALYSIS OF BEHAVIOUR IN COMPRESSION AND SHEAR OF HANDMADE CLAY BRICK MASONRY
MEGAN BOSTON, SHERRY BANEZ, TARA FERNANDEZ- RITCHIE, NICOLE FRUEAN, NATASHA PAIRIS, MARK LAY	TOWARDS CREATING RESILIENT CITIES: A CASE STUDY OF HAMILTON, NEW ZEALAND
YOSHIMASA SHIGENO, KIYOSHI YAMASHITA, JUNJI HAMADA	SEISMIC PERFORMANCE OF A PILED RAFT FOUNDATION WITH GRID-FORM DMWS CONSIDERING SOFTENING OF STABILIZED SOIL
FUMINO SUZUKI, KENICHI KATO, TETSUSHI WATANABE, YUSUKE TOMOZAWA	STRONG GROUND MOTION SIMULATION OF THE GREAT 1923 KANTO EARTHQUAKE IN THE TOKYO METROPOLITAN AREA BASED ON STRONG MOTION GENERATION AREA
ATSUSHI AOI, HIROSHI TSUNEKAWA, MUTSUHIRO YOSHIZAWA, ATSUSHI KANBAYASHI, SHUN'ICHI TANO, GANBAT NYAMKHUU	<u>STUDY ON DAMAGE ESTIMATION BY MACHINE LEARNING OF RELATIONSHIP BETWEEN</u> BUILDING RESPONSE AND DAMAGE
TREVOR ALLEN, JONATHAN D GRIFFIN, DAN J CLARK, HADI GHASEMI	REFLECTIONS ON THE NSHA18: WHAT WAS DONE WELL? WHAT COULD BE DONE BETTER?
KENTARO NAKAI, TOSHIHIRO NODA, SHINYA FUKUDA, HIDEHIKO MURAO, AKIRA ASAOKA	LOCALIZED/ENORMOUS SEISMIC DAMAGE OF SUBSURFACE GROUND INDUCED BY THE STRATUM IRREGULARITY
TOSHIHIRO NODA, KENTARO NAKAI	SEISMIC DAMAGE OF SOFT CLAY LAYER DIRECTLY UNDER THE RIVER LEVEE THAT BECOMES PROMINENT BY L2 EARTHQUAKE
GANESH KUMAR JIMEE, K. MEGURO, A. M. DIXIT, ADITYA TAMANG	DISASTER RISK REDUCTION AND MANAGEMENT AT LOCAL GOVERNMENTS IN NEPAL: POLICIES, CHALLENGES & ROAD AHEAD
PAOLA PANNUZZO, TAK-MING CHAN	NUMERICAL ASSESSMENT OF THE FLEXURAL BEHAVIOR OF HOT-FINISHED STEEL BEAMS UNDER MONOTONIC AND CYCLIC LOADING
GEOFFREY W RODGERS, VISHNUPRIYA VISHNUPRIYA, JAMES GEOFFREY CHASE, CONG ZHOU	<u>UPPER AND LOWER BOUNDS OF DEVICE FORCE CAPACITY IN HIGH FORCE TO VOLUME</u> (<u>HF2V) DEVICE DESIGN</u>
GEOFFREY W RODGERS, VISHNUPRIYA VISHNUPRIYA, JAMES GEOFFREY CHASE, CONG ZHOU	<u>GENERALISABLE NONLINEAR FINITE ELEMENT MODELING FOR HIGH FORCE TO VOLUME</u> (<u>HF2V) DEVICE DESIGN</u>
PRADEEP POKHREL, JIRO KUWANO	STABILITY OF UNDERGROUND CAVITY SUBJECTED TO SEISMIC MOTION
DAVE MONTELLANO OSABEL, DAIKI SATO, KAZUHIKO KASAI	EXPERIMENTAL STUDY OF A BRACE-TYPE VISCOELASTIC DAMPER UNDER LONG-PERIOD AND LONG-DURATION EXCITATIONS
ANNA MATSUKAWA, AYA TAUSJIOKA, FUMINORI KAWAMI, JUNKO MURANO, SHIGEO TATSUKI	INCLUSIVE DISASTER RISK REDUCTION WITH BEPPU MODEL: ASSESSMENT BY COMPARISON OF 37 MUNICIPALITIES IN HYOGO PREFECTURE

CHIN-LONG LEE	PROPORTIONAL VISCOUS DAMPING MODEL FOR MATCHING FREQUENCY-DEPENDENT DAMPING RATIO
MASARU OKUTSU, AKIRA ITO, KOUJI ITASAKA, MINORU TANAKA	DAMAGES OF TELECOMMUNICATION FACILITIES DUE TO THE 2016 KUMAMOTO EARTHQUAKE
JUNJI KIYONO, KENJI FUKUNAGA, RYOTARO MABUCH, MASATSUGU SHINOHARA, TAKAFUMI ITO	SEISMIC BEHAVIOUR OF VEHICLES ON HIGHWAY
WATARU SUZUKI, TATSUYA KUBOTA, TAKESHI NAKAMURA, NAOTAKA YAMAMOTO CHIKASADA, NARUMI TAKAHASHI, TAKAYUKI MIYOSHI, SHIN AOI	DEVELOPMENT OF INTEGRATED VISUALIZATION SYSTEM FOR TSUNAMI FORECAST INFORMATION
YOSHIAKI HISADA	<u>WHAT IS FLING STEP? – ITS PHYSICS, THEORY, AND STRONG GROUND MOTION</u> <u>SIMULATION NEAR SURFACE FAULT RUPTURE –</u>
CONG ZHOU, J. GEOFFREY CHASE, GEOFFREY W. RODGERS	AUTOMATED MODELING OF DIGITAL BUILDING CLONES USING HYSTERESIS LOOP ANALYSIS
YASUMASA SUZUI, TAKESHI SANO, YOSHIKAZU UTSUMI, HIROSHI HIRATA, DAISUKE ODE	BI-DIRECTIONAL DYNAMIC LOADING TESTS OF A STUD-TYPE MULTI-UNIT FRICTION DAMPER USING CONED DISC SPRINGS
YUKIHIDE KAJITA, SEIJI FUKUI, TAKESHI KITAHARA, KUNIHIKO UNO, TAIJI MAZDA	INVESTIGATION FOR SUBSIDENCE AT THE APPROACHING AREAS OF ABUTMENTS INDUCED BY SEQUENCED GROUND MOTIONS
PING TAN	PARAMETRIC OPTIMIZATION OF TUNED MASS DAMPERS FOR HIGH-RISE STRUCTURES CONSIDERING STRUCTURAL BENDING DEFORMATION
JUNJI HAMADA, SHUICHI WAKAI, KIYOSHI YAMASHITA	SEISMIC OBSERVATION OF LARGE-SCALE PILED RAFT FOUNDATION WITH GRID-FORM DEEP MIXING WALLS SUPPORTING ISOLATED OFFICE BUILDING
YOSHIKI KOYAMA, SATOSHI YAMAGAMI, HIDETAKA FUNAKI, MOTOKI MISU, MIYUKI SHIMIZU, MINEO TAKAYAMA	A STUDY OF AGED DETERIORATION OF RUBBER BEARINGS INSTALLED IN THE ISOLATED BUILDING AFTER 30 YEARS IN USE
SUGURU SUZUKI	A FUNDAMENTAL STUDY ON STRUCTURAL PERFORMANCE OF CES SHEAR WALLS WITH OPENINGS
SURENDRA NADH SOMALA, RAGHUCHARAN M C	SEISMIC LOSS ESTIMATION AND RISK ASSESSMENT FOR NATIONAL CAPITAL TERRITORY OF DELHI, INDIA: FIRST RESULTS
PAOLO CLEMENTE, FERNANDO SAITTA	SEISMIC ANALYSIS OF A TWO-SPAN MASONRY ARCH BRIDGE
YOSHINAO MATSUBARA, KOJI NISHINO, NOBUO KOJIMA, YOSHITAKA TSUTSUMI, SHIN KUMAGAI, HIROYUKI KAMINO	SEISMIC TEST RESULTS OF THE ESPECIAL VALVES AND VALVE ACTUATORS FOR NUCLEAR POWER PLANT
CONG ZHOU, MOHAMMAD RABIEPOUR, J GEOFFREY CHASE, GEOFFREY W RODGERS	COMPARING DIFFERENT METHODS TO IDENTIFY STIFFNESS DEGRADATION FOR PINCHED HYSTERETIC STRUCTURES
MASASHI KURAMASU, ICHIRO TAMURA, YASUKI OHTORI	A FRAMEWORK OF PERFORMANCE-GOAL BASED APPROCH FOR SEISMIC DESIGN OF NUCLEAR POWER PLANTS
SHOICHI ANDO	TREND OF TSUNAMI EVACUATION BUILDINGS AGAINST THE NANKAI TROUGH EARTHQUAKE
KEIICHI OKADA, TAKESHI MORII	APPLICABILITY OF NUMBER OF SENSORS AND SIMPLE STRUCTURAL DESIGN MODEL FOR SEISMIC RESPONSE ESTIMATION SYSTEM OF WHOLE BUILDING
SUBHASH CHANDRA GUPTA, MUKUT LAL SHARMA, RAJIV SACHDEVA	STRONG MOTION NETWORK IN TEHRI DAM AND KOTESHWAR DAM IN GARHWAL HIMALAYA
YOSHINOBU MIZUI, HIROYUKI FUJIWARA	DEVELOPMENT AND UTILIZATION OF NANKAI TROUGH EARTHQUAKE DISASTER
YUSUKE HORI, DIDIER PETTINGA, YOSHITAKA SUZUKI, MASAYOSHI NAKASHIMA	EXPERIMENT TO ANALYSIS – DEFINING PERFORMANCE LIMIT-STATES FOR CFT COLUMNS

ANDRES FELIPE HERNANDEZ ESTRADA	<u>AN INITIAL APPROACH TO ESTIMATE THE TIME DEPENDENCY OF SEISMIC RISK IN URBAN</u> <u>AREAS</u>
VICTOR CONTRERAS, SILVIA MAZZONI, TADAHIRO KISHIDA, SEAN AHDI, ROBERT B DARRAGH, ROBERT R YOUNGS, BRIAN S. J. CHIOU, NICOLAS KUEHN, KATIE WOODDELL, YOUSEF BOZORGNIA, JONATHAN PAUL STEWART	DATA RESOURCES FOR NGA-SUBDUCTION PROJECT
DIMITRIOS PATSIALIS, ALEXANDROS TAFLANIDIS	REDUCED ORDER MODELING OF HYSTERETIC STRUCTURAL RESPONSE AND APPLICATIONS TO SEISMIC RISK ASSESSMENT
SHOSUKE SATO, FUMIHIKO IMAMURA	<u>TSUNAMI DISASTER TRADITION BEFORE THE 2011 GREAT EAST JAPAN EARTHQUAKE AND</u> THE EFFECTIVENESS OF CASUALTY REDUCTION
FELIPE CARRASCO, JOSE PINCHEIRA	SEISMIC RESPONSE OF REINFORCED CONCRETE FRAME AND WALL BUILDINGS WITH HIGH-STRENGTH STEEL
JAYANTA PATHAK, ABDELGHANI MESLEM, DOMINIK LANG, ATUL BORA, CONRAD LINDHOLM, YOGENDRA SINGH, KIRON MAZUMDAR	<u>TOWARDS REAL-TIME EARTHQUAKE LOSS INFORMATION SYSTEM FOR GUWAHATI CITY,</u> <u>ASSAM, INDIA</u>
LEONARDO RAMIREZ-GUZMAN, JORGE AGUIRRE, MARCO A. MACIAS CASTILLO, MAURICIO AYALA HERNANDEZ, CITLALI PEREZ YAÑEZ, MIGUEL LEONARDO SUAREZ, H. SANDOVAL GÓMEZ, ANA LAURA RUIZ GORDILLO, A. MORA CONTRERAS, ISRAEL MOLINA ÁVILA, JUAN MANUEL VELASCO MIRANDA, RICAR	NEAR REAL-TIME GROUND MOTION PARAMETERS AND LOSS ESTIMATES SYSTEM FOR MEXICO CITY
MANISH KUMAR, MANISH KUMAR JANGID, AKSHAY AGATKAR	SEISMIC ISOLATION OF HIGH-SPEED RAILWAY BRIDGES
JORGE FERNANDO MOSCOSO, PEDRO ROBERTO ESPINOZA, ESTEBAN TEODORO AMAYA, MATÍAS ANDRES HUBE, HERNÁN SANTA MARÍA	RESIDUAL CAPACITY OF REINFORCING BARS SUBJECTED TO CYCLIC LOADING
GIUSEPPE LOMIENTO, ARSEN ADZHEMYAN, GIANMARIO BENZONI, ANDREW F. KOSCAL, ANTHONY PENAFLOR, SOHEIL POURYAGHOOBI-ANZABI	EXPERIMENTAL COMPARISON AND MODELING OF DOUBLE AND TRIPLE CONCAVE SEISMIC ISOLATORS
CARLOS ZAVALA, MIGUEL DIAZ, ROY REYNA	<u>DEPENDENCE OF TIME OCURRENCE AND THE INFLUENCE ON SEISMIC RISK ANALYSIS IN</u> LIMA CITY
LAKSHMI L, KUNWAR K. BAJPAI, SUPARNO MUKHOPADHYAY, SAMIT RAY-CHAUDHURI	<u>SEISMIC RETROFITTING OF EXISTING UNREINFORCED MASONRY BUILDINGS WITH</u> SEISMIC BAND: FULL SCALE TESTING AND FRAGILITY ANALYSIS
EDUARDO MIRANDA, HECTOR DAVALOS	FIV3: A ROBUST INTENSITY MEASURE FOR COLLAPSE RISK ASSESSMENT OF STRUCTURES SUBJECTED TO NEAR-FAULT PULSE-LIKE GROUND MOTIONS
EDUARDO MIRANDA, CRISTIAN CRUZ	TOWARDS IMPROVED MODELING OF DAMPING FOR SEISMIC ANALYSIS OF BUILDINGS
VESNA TERZIC, MAHMOUD BAEI	OPTIMIZATION OF DAMPERS IN VISCOUSLY DAMPED MOMENT FRAMES UTILIZING MOPSO
MARCO DI LUDOVICO, RAFFAELLO FICO, SALVATORE PROVENZANO, ANTONIO MANNELLA, GIUSEPPINA DE MARTINO, ADRIANA MARRA, ELENA SPERANZA, ANDREA PROTA, MAURO DOLCE	<u>THE RECONSTRUCTION OF RESIDENTIAL BUILDINGS OF HISTORICAL</u> CENTERS DAMAGED BY L'AQUILA 2009 EARTHQUAKE
DANIELE MALOMO, MATTHEW J. DEJONG	<u>A NOVEL MACRO-DISTINCT ELEMENT MODEL FOR THE IN-PLANE ANALYSIS OF</u> <u>UNREINFORCED MASONRY STRUCTURES</u>

LUCIA TIRCA, LIANG CHEN, SIAMAK PEJMANFAR	EARTHQUAKE-INDUCED LOSS AND COLLAPSE RISK ASSESSMENT OF STEEL SEGMENTAL ELASTIC SPINE BRACED FRAMES
SOFIA ALDEA, RAMIRO BAZAEZ	SEISMIC ASSESSMENT OF SKEWED CHILEAN HIGHWAY BRIDGES
PAGE: <u>PAGE 1</u> PAGE 2 PAGE 3	

17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

DEVELOPMENT SEISMIC DESIGN STANDARDS FOR REHABILITATION OF BUILDINGS AFFECTED BY EARTHQUAKE USING DAMPER TECHNOLOGY

H. N. Nurjaman(1). A. Wantoro(2), Y. Dharmawan(2), B. Boediono(3), C.A. Tjiptohardojo(4), D.L. Barus⁽⁵⁾, S. Duan⁽⁶⁾, M. Guo⁽⁷⁾, B. Hariandja⁽⁸⁾, L. Faizal⁽⁹⁾, Suwito⁽¹⁰⁾, D. Dinariana⁽¹¹⁾,

⁽¹⁾ Chairman, Indonesian Association of Precast and Prestress Engineer, Jakarta, Indonesia, iappi_ind@yahoo.com

⁽²⁾ Director, Waskita Beton Precast Ltd., Jakarta, Indonesia, <u>info@waskitaprecast.co.id</u>

⁽⁴⁾ Graduate student, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia, christianalexander.2018@yahoo.com

⁽⁵⁾ Technical Director, Tensindo Kreasi Nusantara, Ltd ,Jakarta, Indonesia, dicayosine@gmail.com

⁽⁶⁾ Director, Liuzhou Orient Engineering Rubber Product Co. Ltd., Guangxi, P.R. China, duandh@ovm.co

⁽⁷⁾ Internasional Division Regional Manager, Liuzhou OVM Engineering Machinery Co. Ltd., Guangxi, P.R. China, guox@ovm.co

⁽⁸⁾ Emeritus Professor, Civil Engineering Department, Institut Teknologi Bandung, Indonesia, <u>binsar_hariandja@ymail.com</u>

⁽⁹⁾ Research Institute of Housing and Human Settlement, Ministry of Public Work and Housing, Indonesia, faizblue_21@ yahoo.com

⁽¹⁰⁾ Assistant Professor, Construction Engineering and Management Department, Universitas Agung Podomoro, Indonesia, suwito@podomorouniversity.ac.id

(11) Associate Professor, Civil Engineering Department, Universitas Persada Indonesia YAI, Indonesia, dwidinariana@gmail.com

Abstract

Since strong earthquake and tsunami took place in Aceh 2004, the frequency of strong earthquakes has increased significantly in several regions in Indonesia. Researches on seismicity and earthquake engineering conducted since 2004 generally result in higher design seismic load in several region in Indonesia and stringent requirements of design standard. This condition means that many buildings that were built before the latest seismic design standard would fail to meet its performance requirements. These buildings, especially important public buildings such as government buildings, schools, hospitals and shopping centers, need technology to improve their structural performances against earthquake with minimal changing to their existing structures. Damper technology is one of such technologies that can dissipate additional earthquake load due to standard design revision. Moreover, in 2019, Indonesia Government planned to begin including damper technology in its seismic design code by adopting ASCE7-16. This study will present part of results from research related to implementation of damper technology in building that will be conducted in 3 year span. In the first year (2019), research focused on the selection of damper technology that is effective in improving seismic performance and has the potential economically to be manufactured in Indonesia. To determine the effectiveness of a damper technology in improving structural performance against earthquake load, a case study illustrating the process and decision regarding rehabilitation of a government office building in city of Palu that was recently struck by earthquake of magnitude M = 7.4 on September 28, 2018, will be conducted. A series of response history analyses will be carried out on rehabilitated structure of building used as the case study. In the second year (2020), the selected damper technology will be installed in model structure and will be tested on shaking table to verify its seismic structural performance and to establish Indonesian National Standard for the product. And in the final year (2021), production of damper product in Indonesia will be started and finalization of seismic design standard of building using damper technology will be conducted. The developed seismic design standard can then be used for designing either new building or retrofitting of existing building to achieve latest requirements or restoration of seismic performance of building impacted by earthquake.

Keywords: damper technology; seismic design standard; response history analysis; high performance-based design; shaking table testing

⁽³⁾ Professor, School of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia, <u>b.budiono@lapi.itb.ac.id</u>

The 17th World Conference on Earthquake Engineering

17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

1. Introduction

Since strong earthquake and tsunami took place in Aceh 2004, the frequency of strong earthquakes has increased significantly in several regions in Indonesia. Researches on seismicity and earthquake engineering conducted since 2004 generally result in higher design seismic load in several region in Indonesia and stringent requirements of design standard. This condition means that many buildings that were built before the latest seismic design standard would fail to meet its performance requirements. These buildings, especially important public buildings such as government buildings, schools, hospitals and shopping centers, need technology to improve their structural performances against earthquake with minimal changing to their existing structures. Damper technology is one of such technologies that can dissipate additional earthquake load due to standard design revision.

To determine the effectiveness of a damper technology in improving structural performance against earthquake load, a case study illustrating the process and decision regarding rehabilitation of a government office building in city of Palu that was recently struck by earthquake of magnitude M = 7.4 on September 28, 2018, will be conducted. A series of response history analyses will be carried out on rehabilitated structure of building used as the case study.

2. Conditions after the Earthquake

The 2018 earthquake in Sulawesi was a 7.4 Mw earthquake followed by a tsunami that struck the western coast of Sulawesi Island, northern part on September 28, 2018, at 18.02 WITA. The epicenter was 26 km north of Donggala and 80 km northwest of Palu City with a depth of 10 km. Earthquake shocks were felt in Donggala, Palu, Parigi Moutong, Sigi, Poso, Tolitoli, Mamuju and even Samarinda, Balikpapan in Borneo, and Makassar in Celebes, as shown in Fig 1. The earthquake triggered a tsunami to a height of 5 meters in the city of Palu.

Fig. 1 – USGS Map of the Sulawesi Earthquake

9a-0005 17WCEL 2020

V_b

Elastic

Range

The 17th World Conference on Earthquake Engineering 17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

In general, many buildings in Central Sulawesi Province were severely damaged by the earthquake, categorized as moderately to severely damage, including the Cipta Karya and Water Resources Office Buildings in Central Sulawesi Province (Fig 2 and Fig 3). Directorate General Cipta Karya and Water Resources Office building consists of 4 main buildings separated by dilatation. Before the earthquake occurred, these building were functioned as centers for office activities that had 2 parts of activities; Cipta Karya and Water Resources.

Fig. 2 – Damage in the Front of the Building

Fig. 3 – Damage in the Back of the Building

The design of earthquake resistant buildings aims to maintain every vital service of the building's function, limit the inconvenience of occupancy and damage to the building so that it can still be repaired at low cost when a mild to moderate earthquake occurs and avoid fatalities due to the collapse of the building in a strong earthquake event. Performance-based earthquake resistant building design is a process that can be used to design new buildings and strengthen existing buildings with an understanding of the aspects of safety risk (life), readiness for use (occupancy), and the risk of financial losses arising from earthquakes (economic loss). FEMA 356 (2000) sets the level of performance for designing earthquake resistant structures as seen in Fig 4 and Fig 5.

ATC-40 CAPACITY CURVE (PUSH-OVER ANALYSIS - STRUCTURE)

From visual investigation, this building Performance Level does not fall in Collapse Prevention (CP) category, where the building Performance Level should be Life Safety (LS). To repair this building, 2 alternative designs were carried out. The first alternative was to use conventional retrofitting with concrete jacketing, and the second alternative using seismic damping resistant.

17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

The data required for evaluating the structure of the Cipta Karya and Water Resources Building of Central Sulawesi Province were obtained as follows:

- Soil investigation data conducted by the Soil Mechanics Laboratory Team of the Faculty of Engineering, Tadulako University who conducted 2 points of Boring Log. Boring log results show the type of sandy clay soil at the top and sand in the hard soil, with an NSPT value > 50 located at a depth of 12 meters.
- 2. As-built Drawing Building Cipta Karya and Water Resources of Central Sulawesi Province.
- 3. Data from the Hammer Test and UVP test results.
- 4. Direct survey of damaged buildings.

3. Conventional Retrofitting Evaluation

Conventional retrofitting design based on Earthquake Code SNI 1726:2012 which refers to ASCE 374.1-05^[1], and Concrete Code SNI 2847:2013 which refers to ACI 318-11^[2]. The designed Performance Level of the building is Life Safety (LS). The design will result in the cost required to retrofit the building.

3.1 Material

The specifications of the materials used are:

- 1. Concrete Jacketing: fc' = 45 MPa
- 2. Rebar : $D \ge 10$ BJTD 40, fy = 400 MPa : $D \le 10$ BJTD 24, fy = 240 MPa
- 3.2 Description of Building Structure System

The building consists of 4 buildings separated by dilatation. In general, the structure may be categorized as a Special Moment Resistant Frame (SMRF) system. The structure was designed using the conventional concrete jacketing.

3.3 Structural Design Method

Analysis was generally carried out in 3 dimensions to obtain optimal results. The analysis was carried out in 2 parts. First, eigen-value analysis was performed to determine the dominant vibration mode and period. Vibration period data from this analysis was used to determine the static earthquake force based on the appropriate spectral response. Structural analysis was divided into two stages, namely the first stage of upper structure analysis which consists of eight layers of structure and was considered to be trapped laterally at the top level of the basement floor. As well as the second stage of the analysis of the basement structure, which is burdened by a combination of earthquake loads originating from the upper structure, the load from the inertia force of the basement floor itself and the load originating from the ground pressure around the basement.

The basement design was made stronger than the upper structure or should not fail earlier than the upper structure, so that the design was still behaving elastic to the planned earthquake load. Analysis of the 3-dimensional structure by paying attention to the torque effect is performed to obtain internal forces. Structural analysis was carried out with the help of the ETABS package program. 3D model can be seen in Fig 6.

3.4 Basic Loading and Load Reduction Parameters

- 1. Basic Loading - Concrete γ : 24 kN/m³ - Super Dead load (SDL) : 1.2 kN/m²
 - Live Load w_{ll} : 2.5 kN/m² Wall : 2.5 kN/m²
- 2. Parameter Coefficient Factors Reduction of life load design used in structural planning (*according to SNI 1726:2012*) are :
 - Earthquake review (Dynamic analysis) : 0.25
 - Live Load Parking floor : 1.00

- 3. Design parameters (reduction factor Ø) that are used in structural planning (*according to SNI 2847: 2013*) are:
 - Flexural reduction factor : 0.9
 - Axial reduction factor : 0.65
 - Shear reduction factor : 0.75
- 4. The effectiveness parameter of moment inertia (cross section of crack) (according to SNI 2847:2013) :
 - Beam Components : 0.35 Ig
 - Column Components : 0.7 Ig
 - Wall Components : 0.7 Ig

Fig. 6 – 3D View, Front View and Side View of Buildings

- 3.5 Determination of the Force Earthquake Structure of the Upper Structure For a review of earthquake forces the data used are as follows:
- 3.5.1 Bedrock Acceleration Map (according to SNI 1726:2012)

Fig. 7 - Earthquake Acceleration Earthquake Map in Short Period

Fig. 8 - Earthquake Acceleration Earthquake Map in 1 second period

The 17th World Conference on Earthquake Engineering

17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

Fig. 9 - Graph of Earthquake Response Spectrum in Palu Region

3.5.2 Building Risk Category

9a-0005

17WCE

2020

This building is included in the risk category II with the earthquake priority factor value used Ie = 1 (Based on Table 1 and Table 2 in SNI 1726: 2012).

3.5.3 Reduction Factor, R = 8

The results of the determination of earthquake parameters from the bedrock acceleration map, soil conditions, and the above primacy factors were obtained that the building is included in the seismic design category E so that the structural system used was a reinforced concrete frame structural system for special moment bearers. (Based on point C.5, Table 9 SNI 1726: 2012).

3.6 Eccentricity of Upper Structure Plan

Distance between the center of mass and the center of rotation of the floor level e must be reviewed an eccentricity of the plan ex for the direction of the earthquake X and ey for the direction of the earthquake Y. If the largest horizontal size of the floor plan of the building structure on that level floor, measured perpendicular to the direction of earthquake loading, expressed as B and L, then the eccentricity of plan e must be determined as follows:

$$e_x = e_{ox} + (0.05 \text{ B Ax}) \text{ and } e_y = e_{oy} + (0.05 \text{ L Ay})$$

Ax/Ay = $(\delta_{max} / 1.2\delta_{avg})^2$

 $e_{\rm ox}$ and $e_{\rm oy}$ is innate eccentricity

0.05 B Ax and 0.05 L Ay is an unexpected eccentricity

Ax and Ay is an unexpected torque magnification factor. Ax and Ay must be ≥ 1.0

LANTAI	δ _A (maks)	δ _B (Min)	δ _{avg}	Ax	Ax < 1	LANTAI	δ _A (maks)	δ _B (Min)	δ _{avg}	Ау	Ay < 1
LTRB	0.049	0.038	0.043	0.883	ok	LTRB	0.051	0.050	0.05050	0.700	ok
LT4	0.039	0.029	0.034	0.916	ok	LT4	0.041	0.041	0.04050	0.694	ok
LT3	0.028	0.020	0.024	0.950	ok	LT3	0.028	0.028	0.02800	0.694	ok
LT2	0.013	0.008	0.011	1.051	cek	LT2	0.012	0.012	0.01220	0.694	ok
LT1	0.002	0.000	0.001	2.778	cek	LT1	0.002	0.000	0.00095	2.778	cek

Table 1 – Determination of the value of Ax and Ay

6

The 17th World Conference on Earthquake Engineering

17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

31.25

34.15

- Table 2 Mass per Floor Diaphragm Unit Story Diaphragm MassX MassY MMI ΧМ YΜ LTRB D5 112.51 112.51 3385.3 31.20 16.54 LT4 D4 2586.22 2586.22 1093631.2 31.22 21.64 LT3 D3 2627.90 2627.90 1105179.8 31.24 21.60 D2 2595.24 2595.24 31.23 21.55 LT2 1099637.5
- 3.7 Building Mass and Modal Participation of Structure Above

The mass of the building per floor as shown in Table 2 below:

3.8 Determination of the Structural Vibration Period

D1

LT1

MODAL

Based on Article 7.8.2 SNI 1726: 2012, the fundamental period of the T structure may not exceed the coefficient results for the upper limit of the period calculated C_u from table 14 and the fundamental period of the T_a approach is calculated in accordance with Article 7.8.2.1 SNI 1726: 2012.

967.67

300559.1

967.67

The natural vibrating period of the building is as follows:

PERIODS

]	Га	ble	3 -	_ 1	Vi	br	at	io	n	Pe	eri	0	ł
Α	Ν	D	F	R	Е	0	υ	Е	Ν	с	I	Е	s

MODE NUMBER	PERIOD (TIME)	FREQUENCY (CYCLES/TIME)	CIRCULAR FREQ (RADIANS/TIME)
Mode 1	0.78259	1.27781	8.02869
Mode 2	0.73442	1.36162	8.55531
Mode 3	0.65237	1.53287	9.63130
Mode 4	0.22190	4.50661	28.31586
Mode 5	0.21345	4.68504	29.43695
Mode 6	0.18725	5.34056	33.55572
Mode 7	0.14309	6.98865	43.91101
Mode 8	0.12801	7.81203	49.08442
Mode 9	0.12714	7.86508	49.41778
Mode 10	0.12368	8.08556	50.80305
Mode 11	0.11849	8.43956	53.02732
Mode 12	0.11815	8.46352	53.17785

$\begin{array}{l} T_a = 0.0466^{\alpha} = 0.6938 \; \text{sec} \\ T_{max} = 1.4 \; x \; 0.6938 = 0.9714 \; \text{sec} \end{array}$	(according to table 15, SNI1726:2012) (according table 14, SNI1726:2012)
So the value of the period that occurs is =	$T_x = 0.7825 \text{ sec} < T_{max} = 0.9714 \text{ sec} \dots \text{ Ok}$ $T_y = 0.7344 \text{ sec} < T_{max} = 0.9714 \text{ sec} \dots \text{ Ok}$

The 17th World Conference on Earthquake Engineering 17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

3.9 Earthquake Force Calculation at Upper Structure Design

The results of dynamic analysis for cumulative shear forces in the x and y direction can be seen in Fig. 10 below:

Determination of used earthquake force or design in X & Y direction:

Fig. 10 - Graph of comparison of shear force in X-direction and Y-direction

3.10 Building Structure Analysis Performance

In Article 7.8.6 SNI 1726:2012, it is determined that the deviation between design floors (Δ) must be calculated as the difference in deflection of the center of mass at the top and bottom levels reviewed. The mass center deflection at the level (δ_x) must be determined according to the following equation:

 $\delta_x = C_d \; \delta_{xe} \; / \; I_e$

 C_d = deflection amplification factor (according table 9 SNI 1726:2012) = 5.5

 δ_{xe} = deflection at the required location

 I_e = earthquake priority factor = 1

Limitation of inter-floor deviation of Δ_a level as stipulated in Article 7.12 SNI1726: 2012 is $0.02h_{sx}$ with h_{sx} as high level below level x.

Calculation of level deviations between floors based on minimum shear forces and period values to calculate deviations between floors (in accordance with Article 7.8.6.1 and 7.8.6.2 SNI 1726: 2012). Calculation of deviation between floors also takes into account the default torque and unexpected torque.

The deviation between floors is based on the followings as shown in the following Table 4:

Story	h _{sx} (mm)	δ _{xe} (mm)	δx=Cd.δxe/le	Δ	Δ _a =0.02h _{sx} (mm)	Δ<Δ _a		Story	h _{sx} (mm)	δ _{xe} (mm)	δx=Cd.δxe/le	Δ	Δ _a =0.02h _{sx} (mm)	Δ<Δ _a
LTRB	4200	35.70	130.90	13.93	84.00	ok		LTRB	4200	49.30	180.77	32.27	84.00	ok
LT4	4200	31.90	116.97	34.83	84.00	ok		LT4	4200	40.50	148.50	45.83	84.00	ok
LT3	4200	22.40	82.13	44.73	84.00	ok		LT3	4200	28.00	102.67	57.93	84.00	ok
LT2	4500	10.20	37.40	28.23	90.00	ok		LT2	4500	12.20	44.73	37.77	90.00	ok
LT1	3000	2.50	9.17	9.17	60.00	ok		LT1	3000	1.90	6.97	6.97	60.00	ok

Table 4 - Intersection between floors in X-direction and Y-direction

The 17th World Conference on Earthquake Engineering

9a-0005

17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

The influence of P-delta is calculated according to Article 7.8.7 SNI 1726-2012

The effect of P-delta should not be taken into account if the stability coefficient, $\theta \leq 0.1$

$$\theta = \frac{P_x \Delta I_e}{V_x h_{sx} C_d}$$

 P_x = total vertical design load at and above level x (kN)

 Δ = deviation between floors design level (mm)

 $I_e = earthquake priority factor$

 V_x = seismic shear force between level x and x-1 (kN)

 $h_{sx} = story height above level x (mm)$

 $C_d = deflection \ amplification \ factor$

LANTAI	h _{sx} (mm)	Δ	P	v	Ie	Cd	θ	θ max	θ < 0.1
LTRB	4200	2.533	1103.68	1785.40	1.5	5.5	0.000	0.0909	ok
LT4	4200	6.333	25370.81	9865.25	1.5	5.5	0.001	0.0909	ok
LT3	4200	8.133	25779.69	15317.54	1.5	5.5	0.001	0.0909	ok
LT2	4500	5.133	25459.32	18032.34	1.5	5.5	0.000	0.0909	ok
LT1	3000	1.667	9492.87	3378.16	1.5	5.5	0.000	0.0909	ok

Table 5 - P-delta effect in X-direction

Table 6 - P-delta effect	in Y-direction
--------------------------	----------------

LANTAI	h _{sx} (mm)	Δ	Р	v	Ie	Cd	θ	θ max	θ < 0.1
LTRB	4200	5.867	1103.675	1796.14	1.5	5.5	0.000	0.0909	ok
LT4	4200	8.333	25370.811	9952.70	1.5	5.5	0.001	0.0909	ok
LT3	4200	10.533	25779.686	15410.89	1.5	5.5	0.001	0.0909	ok
LT2	4500	6.867	25459.315	18086.18	1.5	5.5	0.001	0.0909	ok
LT1	3000	1.267	9492.8731	1415.14	1.5	5.5	0.001	0.0909	ok

From the table above it can be seen that the value of $\Theta \leq 0.1$ in both the X and Y directions, so in planning, this structure does not take into account the effect of P-delta.

3.11 Loading Combination

In accordance with the specification in Article 7.4.2 SNI 1726:2012, the combination of loading due to the influence of earthquake loads must be taken into account to the effect of horizontal earthquake loads and the effect of vertical earthquake loads. The effect of horizontal earthquake load is determined by including the effect of the redundancy factor ρ as determined in Article 7.3.4 SNI 1726:2012. The effect of the vertical earthquake load is determined by incorporating the factor of the acceleration parameter of the design response spectrum in the short period of S_{DS} as determined in Article 6.10.4 SNI 1726:21012.

By entering the factor $\rho = 1.3$ (for the seismic design category E) and the value of $S_{DS} = 1.315$.

3.12 Estimated Cost

Estimated Concrete Jacketing method cost are around 480,000 USD.

Fig. 11 - Concrete Retrofitting Design & Process

Fig. 12 - Column Retrofit Layout

4. Seismic Damping Design

Concept and mechanism of seismic with seismic isolation is shown in Fig 13. The purpose of seismic isolation is to reduce the effect of the ground motion to structure, thus avoid destruction. To achieve this, the basic cycle of structure can be extended to avoid the size of seismic energy concentration, thus reduce the seismic force of structure as shown in Fig 14. However, the reduction of seismic force by extension of structural cycle comes inevitably with the larger structural displacement, as shown in Fig 15, arising difficulties in design. In order to control the large deformation within limits, a damper can be incorporated into the structure to increase the damping and decrease the displacement of the structure. It can be seen from Fig 14 that the dynamic acceleration of structure can be decreased with increasing the damping of structure^[3].

The 17th World Conference on Earthquake Engineering 17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

The structure seismic isolation technique is to extend the natural vibration cycle of structure by a seismic isolation unit, reducing the seismic displacement response at the top of pier or foundation while attenuating the acceleration response of upper structure, so as to ensure the structure safety. The principle of seismic isolation is to extend the natural vibration cycle of structure by a seismic isolation unit, increasing the damping coefficient to reduce the acceleration response of structure in the earthquake; and at the same time distributing the seismic force evenly over every pier, averting the seismic force from concentrating on one pier.

Performance of the Lead Rod Damping Seismic Bearing can be seen in Fig 16:

Horizontal Equivalent Stiffness Equivalent Damping Ratio

$$K_B = \frac{F(u) - F(-u)}{2u} \qquad h = \frac{\Delta W}{2\pi W}$$

Fig. 16 - Horizontal Load and Force Performance of Lead Rod Damping Seismic Bearing

Dimensions of the Lead Rod Damping Seismic Bearing can be seen in Fig 17.

Fig. 17 – Dimensions of the Rectangular LRB and Round LRB

The 17th World Conference on Earthquake Engineering

17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

Fig. 18 – Seismic Bearing Installation

The estimated cost for Seismic Damping Design are around 1,100,000 USD if performance level is Immediate Occupancy (IO), or around 600,000 USD if performance level range from Immediate Occupancy (IO) to Life Safety (LS).

5. Conclusion

From the results of the structural inspection and evaluation of the Cipta Karya and Water Resources building, the following conclusions are made:

- 1. The main structure was found to have structural damage in the column and beams, especially the condition of the architectural components that have been tilted and broken. Such performance conditions have already exceeded Life Safety performance limits. Improvement/strengthening can still be made to bring the building performance back into Minimum Performance Requirements (Life Safety).
- 2. Stairs found to experiencing severely damages (cracked and tilted), thus exceeds the Near Collapse performance limits. The stairs must be demolished.
- 3. Estimated cost for alternative construction engineering are proposed as follow:
 - a) Concrete Jacketing: 480,000 USD
 - b) Seismic Damping Design
 - If performance level is Immediate Occupancy (IO): 1,100,000 USD
 - If performance level range from Immediate Occupancy (IO) to Life Safety (LS): 600,000 USD

6. References

- [1] ACI 374.1-05, Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary
- [2] ACI 318-11, Building Code Requirements for Structural Concrete
- [3] OVM 2012, Seismic Mitigation and Isolation Products for Structure