

UNTUK PENELITAN

Dr. Dwi Sihono Raharjo, SE., MM Prof. Dr. Ir. Agus Djoko Santosa, SU,'

STATA 14 UNTUK PENELITIAN

Dr. Dwi Sihono Raharjo, SE., MM
Prof. Dr. Ir. Agus Djoko Santosa, SU

STATA 14 UNTUK PENELITIAN

PENGANTAR

© Penerbit Kepel Press

Penulis:
Dr. Dwi Sihono Raharjo, SE., MM
Prof. Dr. Ir. Agus Djoko Santosa, SU
Desain Sampul :
Winengku Nugroho
Desain Isi :
Safitriyani

Cetakan pertama, Agustus 2020
Diterbitkan oleh Penerbit Kepel Press
Puri Arsita A-6, Jl. Kalimantan, Ringroad Utara, Yogyakarta
Telp/faks : 0274-884500
Hp : 08122710912
email : amara_books@yahoo.com

Anggota IKAPI

ISBN : 978-602-356-346-3

Hak cipta dilindungi Undang-Undang
Dilarang mengutip atau memperbanyak sebagian atau seluruh isi
buku, tanpa izin tertulis dari penulis dan penerbit.

Pengertian statistik merupakan alat yang dipergunakan untuk mengumpulkan data, memilah data, mengkoding data, mengolah data dan memberikan kesimpulan. Selanjutnya hasil pengolahan data akan menjadi dasar dalam pengambilan informasi bagi user atau pun stakeholder. Beragam metode kuantitatif dipergunakan di dalam analisis, antara lain Quntitative model, SPSS, Eviews, Amos, Lisrel, PLS, PPSP, dan STATA.

STATA merupakan salah satu program yang bisa dimanfaatkan dalam penghitungan Kuantitatif. Berbeda dengan SPSS, nampaknya STATA mempunyai keunggulan sendiri. Selanjutnya STATA seperti halnya SPSS, dengan symbol sav, dalam STATA menggunakan simbol dta. Analisis kesehatan dan psikologi banyak mempergunakan program STATA. Program STATA mempunyai kelebihan dibandingkan dengan SPSS, fitur lebih banyak dan kompleks. Sehingga memungkinkan penggunaan STATA untuk analisis statistik maupun analisis klinis. Buku Stata 14 ini disusun awalnya dengan sebelas bab dan tambahan regresi mediasi dan moderasi merupakan kelengkapan dari buku ini dipersiapkan dengan sangat mudah, disajikan dalam format konsep, dan aplikasi.

Akhir kata dengan diterbitkannya analisis STATA 14 diharapkan bermanfaat bagi para pengguna di dalam melaksanakan pengolahan data kuantitatif.

Percetakan Amara Books
Isi diluar tanggung jawab percetakan

DAFTAR ISI

Pengantar iii
Daftar Isi V
BAB I Pendahuluan 1
BAB II Deskripsi Data 11
BAB III Uji Normalitas Data Menggunakan Stata 17
BAB IV Validitas dan Reliabelitas 31
BAB V Uji Asumsi Klasik 41
BAB VI Regresi 63
BAB VII Regresi Data Panel 83
BAB VIII Analisis Korelasi 129
BAB IX T Tes, Anava dan Anacova 137
BAB X Statistik Inferensial Uji Non Parametrik 167
BAB XI Intervening dan Moderasi 199
BAB XII Membuat Tabel Statistik 215
Daftar Pustaka 219

BAB I
 PENDAHULUAN

Tujuan Intruksional Umum:

Karyasiswa mengetahui cara menyusun data dalam program Stata.

Tujuan Intruksional khusus:

Karyasiswa mengetahui cara memasukkan data dalam program Stata.

1. Konsep

Pengertian statistik, merupakan alat yang dipergunakan untuk mengumpulkan data, memilah data, mengkoding data, mengolah data. Dan memberikan kesimpulan. Di mana selanjutnya hasil pengolahan data akan menjadi dasar dalam pengambilan informasi bagi user ataupun stakeholder.

Penghitungan secara kuantitatif, terdiri atas beragam metode, antara lain Quntitative model, SPSS, Eviews, Amos, Lisrel, PLS, PPSP, dan STATA. STATA merupakan salah satu program yang bisa dimanfaatkan dalam penghitungan kuantitatif. Berbeda dengan SPSS, nampaknya STATA mempunyai keunggulan sendiri. Selanjutnya STATA seperti halnya SPSS, dengan symbol sav, dalam STATA menggunakan symbol dta. Dengan demikian apakah bisa menggunakan data bersumber dari Eksel, ataupun SPSS. Untuk itu dicoba menggunakan beberapa data sebagai berikut.

1. Menggunakan data bersimbol dta, sebagai berikut:

no	sex	kel_usia	gizi	berat	perdarahan	perkembangan
1	laki-lak	$1-12$ bul	kurang	<2500	tidak	suspek
2	laki-lak	$13-36$ bu	kurang	<2500	tidak	suspek
3	laki-lak	$13-36$ bu	kurang	<2500	tidak	suspek

4	laki-lak	13-36 bu	kurang	>2500	tidak	suspek
5	laki-lak	$13-36 \mathrm{bu}$	kurang	<2500	tidak	suspek
6	laki-lak	13-36 bu	kurang	<2500	tidak	suspek
7	laki-lak	1-12 bul	kurang	<2500	tidak	suspek
8	perempua	1-12 bul	kurang	<2500	ya	suspek
9	perempua	13-36 bu	kurang	>2500	tidak	suspek
10	perempua	$13-36 \mathrm{bu}$	kurang	<2500	tidak	suspek
11	perempua	13-36 bu	kurang	<2500	tidak	suspek
12	perempua	$1-12 \mathrm{bul}$	kurang	<2500	ya	suspek
13	perempua	13-36 bu	kurang	<2500	ya	suspek
14	perempua	13-36 bu	kurang	<2500	tidak	suspek
15	perempua	13-36 bu	kurang	<2500	ya	suspek
16	laki-lak	13-36 bu	baik	<2500	tidak	suspek
17	laki-lak	13-36 bu	baik	<2500	ya	suspek
18	laki-lak	1-12 bul	kurang	<2500	tidak	suspek
19	perempua	13-36 bu	kurang	>2500	tidak	suspek
20	laki-lak	1-12 bul	baik	<2500	ya	suspek
21	laki-lak	13-36 bu.	kurang	<2500	tidak	suspek
22	perempua	13-36 bu	kurang	>2500	tidak	suspek
23	perempua	1-12 bul	kurang	<2500	tidak	suspek
24	perempua	13-36 bu	baik	<2500	tidak	suspek
25	perempua	13-36 bu	kurang	>2500	tidak	suspek
26	laki-lak	1-12 bul	baik	<2500	tidak	suspek
27	laki-lak	1-12 bul	baik	<2500	ya	suspek
28	laki-lak	1-12 bul	baik	<2500	tidak	suspek
29	laki-lak	1-12 bul	baik	<2500	tidak	suspek
30	laki-lak	13-36 bu	kurang	<2500	tidak	suspek
31	laki-lak	$13-36 \mathrm{bu}$	kurang	<2500	tidak	suspek
32	laki-lak	$13-36$ bu	kurang	<2500	tidak	suspek
33	laki-lak	$13-36 \mathrm{bu}$	baik	<2500	tidak	suspek
34	laki-lak	$13-36$ bu	kurang	<2500	tidak	suspek
35	laki-lak	1-12 bul	kurang	<2500	tidak	suspek
36	perempua	1-12 bul	kurang	<2500	ya	suspek
37	perempua	13-36 bu	kurang	<2500	tidak	suspek
38	perempua	$13-36 \mathrm{bu}$	baik	<2500	tidak	suspek
39	perempua	$13-36 \mathrm{bu}$	kurang	<2500	tidak	suspek

40	perempua	1-12 bul	baik	<2500	ya	suspek
41	perempua	$13-36$ bu	kurang	<2500	ya	suspek
42	perempua	13-36 bu	kurang	<2500	tidak	suspek
43	perempua	$13-36$ bu	kurang	<2500	ya	suspek
44	laki-lak	$13-36 \mathrm{bu}$	baik	>2500	tidak	suspek
45	laki-lak	13-36 bu	baik	>2500	ya	suspek
46	laki-lak	1-12 bul	kurang	>2500	tidak	suspek
47	perempua	13-36 bu	kurang	>2500	tidak	suspek
48	laki-lak	1-12 bul	baik	<2500	ya	suspek
49	laki-lak	13-36 bu	kurang	<2500	tidak	suspek
50	perempua	$13-36 \mathrm{bu}$	kurang	>2500	tidak	suspek
51	perempua	1-12 bul	kurang	<2500	tidak	suspek
52	perempua	$13-36 \mathrm{bu}$	baik	<2500	tidak	suspek
53	perempua	$13-36$ bu	kurang	>2500	tidak	suspek
54	laki-lak	1-12 bul	baik	<2500	tidak	suspek
55	laki-lak	1-12 bul	baik	<2500	ya	suspek
56	laki-lak	1-12 bul	baik	<2500	tidak	suspek
57	laki-lak	$1-12$ bul	kurang	<2500	tidak	normal
58	laki-lak	1-12 bui	baik	>2500	tidak	normal
59	laki-lak	$13-36 \mathrm{bu}$	kurang	>2500	tidak	normal
60	perempua	13-36 bu	baik	>2500	tidak	normal
61	laki-lak	$13-36 \mathrm{bu}$	baik	>2500	tidak	normal
62	laki-lak	13-36 bu	kurang	>2500	tidak	normal
63	laki-lak	$1-12$ bul	kurang	<2500	tidak	normal
64	laki-lak	13-36 bu	kurang	>2500	ya	normal
65	perempua	1-12 bul	baik	<2500	tidak	normal
66	perempua	1-12 bul	baik	<2500	tidak	normal
67	perempua	13-36 bu	kurang	<2500	tidak	normal
68	laki-lak	13-36 bu	baik	<2500	tidak	normal
69	laki-lak	$13-36 \mathrm{bu}$	baik	<2500	tidak	normal
70	laki-lak	1-12 bul	kurang	<2500	tidak	normal
71	perempua	$13-36 \mathrm{bu}$	kurang	>2500	tidak	normal
72	perempua	13-36 bu	kurang	<2500	tidak	normal
73	laki-lak	$1-12$ bul	kurang	<2500	tidak	normal
74	laki-lak	1-12 bul	baik	>2500	tidak	normal
75	perempua	13-36 bu	baik	<2500	tidak	normal

76	laki-lak	1-12 bul	baik	<2500	ya	normal
77	perempua	1-12 bul	baik	<2500	tidak	normal
78	laki-lak	13-36 bu	baik	>2500	ya	normal
79	perempua	13-36 bu	baik	>2500	tidak	normal
80	perempua	$13-36$ bu	baik	<2500	tidak	normal
81	laki-lak	1-12 bul	baik	<2500	tidak	normal
82	laki-lak	1-12 bul	kurang	<2500	ya	normal
83	perempua	$13-36$ bu	kurang	<2500	ya	normal
84	laki-lak	$13-36$ bu	baik	>2500	tidak	normal
85	laki-lak	13-36 bu	baik	>2500	tidak	normal
86	laki-lak	$13-36$ bu	baik	>2500	tidak	normal
87	perempua	$13-36$ bu	kurang	<2500	ya	normal
88	perempua	$13-36$ bu	kurang	<2500	ya	normal
89	perempua	$13-36$ bu	baik	>2500	tidak	normal
90	laki-lak	1-12 bul	baik	<2500	tidak	normal
91	laki-lak	1-12 bul	baik	>2500	tidak	normal
92	perempua	1-12 bul	kurang	<2500	tidak	normal
93	laki-lak	$13-36$ bu	baik	>2500	tidak	normal
94	laki-lak	$13-36$ bu	baik	<2500	tidak	normal
95	laki-lak	$13-36$ bu	baik	>2500	tidak	normal
96	laki-lak	1-12 bul	kurang	<2500	tidak	normal
97	perempua	13-36 bu	kurang	>2500	tidak	normal
98	perempua	1-12 bul	baik	>2500	tidak	normal
99	laki-lak	1-12 bul	kurang	>2500	tidak	normal
100	laki-lak	1-12 bul	kurang	<2500	tidak	normal
101	laki-lak	1-12 bul	baik	>2500	tidak	normal
102	laki-lak	$13-36$ bu	kurang	>2500	tidak	normal
103	perempua	13-36 bu	baik	>2500	tidak	normal
104	laki-lak	$13-36$ bu	baik	>2500	tidak	normal
105	laki-lak	13-36 bu	kurang	>2500	tidak	normal
106	laki-lak	1-12 bul	kurang	<2500	tidak	normal
107	laki-lak	$13-36$ bu	kurang	>2500	ya	normal
108	perempua	1-12 bul	baik	<2500	tidak	normal
109	perempua	1-12 bul	baik	<2500	tidak	normal
110	perempua	$13-36$ bu	kurang	<2500	tidak	normal
111	laki-lak	13-36 bu	baik	<2500	tidak	normal

112	laki-lak	$13-36 \mathrm{bu}$	baik	<2500	tidak	normal
113	laki-lak	$1-12$ bul	kurang	<2500	tidak	normal
114	perempua	$13-36 \mathrm{bu}$	kurang	>2500	tidak	normal
115	perempua	13-36 bu	kurang	<2500	tidak	normal
116	laki-lak	1-12 bul	kurang	<2500	tidak	normal
117	laki-lak	$1-12$ bul	baik	>2500	tidak	normal
118	perempua	13-36 bu	baik	<2500	tidak	normal
119	laki-lak	1-12 bul	baik	<2500	ya	normal
120	perempua	$1-12$ bul	baik	<2500	tidak	normal
121	laki-lak	13-36 bu	baik	>2500	ya	normal
122	perempua	$13-36 \mathrm{bu}$	baik	>2500	tidak	normal
123	perempua	$13-36$ bu	baik	<2500	tidak	normal
124	laki-lak	$1-12$ bul	baik	<2500	tidak	normal
125	laki-lak	1-12 bul	kurang	<2500	ya	normal
126	perempua	$13-36$ bu	kurang	<2500	ya	normal
127	laki-lak	13-36 bu	baik	>2500	tidak	normal
128	laki-lak	$13-36 \mathrm{bu}$	baik	>2500	tidak	normal
129	laki-lak	$13-36 \mathrm{bu}$	baik	>2500	tidak	normal
130	perempua	$13-36 \mathrm{bu}$	kurang	<2500	ya	normal
131	perempua	$13-36 \mathrm{bu}$	kurang	<2500	ya	normal
132	perempua	13-36 bu	baik	>2500	tidak	normal
133	laki-lak	1-12 bul	baik	<2500	tidak	normal
134	laki-lak	1-12 bul	baik	>2500	tidak	normal
135	perempua	$1-12$ bul	kurang	<2500	tidak	normal
136	laki-lak	$13-36$ bu	baik	>2500	tidak	normal
137	laki-lak	13-36 bu	baik	<2500	tidak	normal
138	laki-lak	$13-36$ bu	baik	>2500	tidak	normal
139	laki-lak	$1-12 \mathrm{bul}$	kurang	<2500	tidak	normal
140	perempua	13-36 bu	kurang	>2500	tidak	normal
141	perempua	$1-12$ bul	baik	>2500	tidak	normal
142	laki-lak	1-12 bul	kurang	>2500	tidak	normal

Sumber: Sopiyudin, 2016.
Jawab:
Buka program Stata sebagai berikut:

2. File > Open > pilih agus ds1 > Data editor > Describe > browser Hasilnya adalah sebagai berikut:

Keterangan:
Dalam Stata dapat dilihat proses kerjanya sebagai berikut:

Keterangan:
Dapat dilihat sebelah kanan, mengenai jumlah data, variabel data.
2. Data bersumber dari eksel agus. 2 xls

Jawab:
Import > eksel >agus 2.xls > Data Data editor > Describe > browser Hasilnya adalah sebagai berikut:

3. Latihan menggunakan data Rabu xls

Data sebagai berikut:

WAKTU	DEPOSITO	IHSG	SUKUBUNGA
1999:01:00	204,54	54,50	15,12
1999:02:00	207,12	38,20	16,95
1999:03:00	206,75	34,85	16,22
1999:04:00	205,34	34,09	14,57
1999:05:00	204,76	31,20	17,13
1999:06:00	204,07	25,20	15,47
1999:07:00	201,93	23,45	12,75
1999:08:00	206,61	19,06	13,79
1999:09:00	198,68	15,88	14,44
1999:10:00	198,79	13,37	14,47
1999:11:00	199,00	12,91	11,65
1999:12:00	202,45	12,95	15,14
2000:01:00	205,12	11,85	15,12
2000:02:00	205,27	12,64	14,79
2000:03:00	209,34	12,40	13,08
2000:04:00	205,48	12,16	15,24
2000:05:00	207,21	11,81	15,14
2000:06:00	208,24	11,69	14,84
2000:07:00	210,91	11,79	16,29
2000:08:00	211,99	11,36	16,40
2000:09:00	211,87	12,84	16,74
2000:10:00	214,33	12,10	16,80
2000:11:00	217,15	13,17	16,20
2000:12:00	221,37	13,24	16,20
2001:01:00	222,10	13,83	16,09
2001:02:00	224,04	14,35	18,23
2001:03:00	226,04	14,36	20,99
2001:04:00	227,04	14,93	24,21
2001:05:00	229,63	14,92	25,02
2001:06:00	233,46	15,00	22,62

$2001: 07: 00$	238,42	15,14	21,89
$2001: 08: 00$	237,92	15,62	21,31
$2001: 09: 00$	239,44	16,16	20,11
$2001: 10: 00$	241,06	16,67	18,49
$2001: 11: 00$	245,18	17,06	16,72
$2001: 12: 00$	249,15	17,24	15,72

Jawab:
Import > eksel > rabu xls > Data Data editor > Describe > browser Hasilnya adalah sebagai berikut:

Latihan:

1. Buatlah data kabupaten xls dengan program Stata

kabupaten	Tahun	Y	x 1	x 2	x
BANJAR	2002	30	0.2055	63.7	2.84
BANJAR	2003	27	0.2314	65.6	2.96
BANJAR	2004	27	0.2134	67.75	3.87
BANJAR	2005	27	0.2617	67.3	4.32
BANJAR	2006	29	0.2246	68.3	2.36
BANJAR	2007	27	0.2652	68.99	5.04
BANJAR	2008	23	0.2869	69	4.98

BANJAR	2009	21	0.256	69.63	5.11
BANJAR	2010	19	0.26	69.91	4.89
BANYUMAS	2002	23	0.2728	66.7	4.51
BANYUMAS	2003	22	0.2788	70.76	3.71
BANYUMAS	2004	21	0.2834	70.23	4.17
BANYUMAS	2005	22	0.246	70.7	3.21
BANYUMAS	2006	24	0.2929	70.8	4.48
BANYUMAS	2007	22	0.246	71.23	5.3
BANYUMAS	2008	23	0.345	71.8	5.38
BANYUMAS	2009	22	0.3244	72.27	5.49
BANYUMAS	2010	20	0.3409	72.6	5.77
PURBA	2002	32	0.2468	65	4.13
PURBA	2003	31	0.2502	68.69	3.14
PURBA	2004	31	0.2528	68.74	3.35
PURBA	2005	30	0.2713	69.3	4.18
PURBA	2006	32	0.2873	69.9	5.06
PURBA	2007	30	0.2727	70.89	6.19
PURBA	2008	27	0.245	70.9	5.3
PURBA	2009	25	0.2697	71.51	5.61
PURBA	2010	25	0.2359	72.07	5.95
CILACAP	2002	22	0.268	65.3	4.44
CILACAP	2003	21	0.2381	69.16	4.54
CILACAP	2004	21	0.2308	69.28	4.93
CILACAP	2005	22	0.2864	69.5	5.33
CILACAP	2006	25	0.2629	69.8	4.72
CILACAP	2007	23	0.2732	70.25	5.08
CILACAP	2008	21	0.2403	70.9	4.92
CILACAP	2009	20	0.2706	71.39	5.25
CILACAP	2010	18	0.2509	71.73	5.65

BAB II DESKRIPSI DATA

Tujuan Intruksional Umum:

Karyasiswa mengetahui deskripsi data dalam program Stata.

Tujuan Intruksional khusus:

Karyasiswa mengetahui cara deskripsi data dalam program Stata.

Konsep

Penggambaran subyek dan atau pun obyek dalam penelitian, lebih banyak dikenal dengan sebutan deskripsi. Pendiskripsian dalam penelitian kuantitatif, dengan nyata akan menampilkan semua variabel dalam penelitian, demikian pula dengan nilai Mean, Median, Modus, sebagai contoh berikut:

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
IQ	84	91.00	121.00	107.0952	7.49075
MOT	84	24.00	52.00	36.8571	6.38172
PRES	84	63.00	86.00	78.9167	4.85006
Valid N (listwise)	84				

Penjelasan: dengan memperhatikan data yang terdiri atas 3 variabel, IQ, MOT, dan PRES, dengan jumlah sampel terdeteksi sebanyak 84 orang, dengan nilai rerata setiap variabel ditampilkan, demikian pula untuk standar deviasinya. Contoh lain menggunakan program Eviews, sebagai berikut:

(G) Group: UNTITLED Workfile RABU:Rabul								E0		
View Proc Object	Print	Name	Freeze	Sample	Sheet	Stats 5	Spec			
	DEPOSITO		IHSG		SUKUBUNGA			WAKTU		
Mean	2161611		1799972		1683167			NA		
Median	2101250		1464000		1620000			Na		
Maximum	2491500		5450000		2502000			NA		
Minimum	1986800		1136000		1165000			NA		
Std Dev.	1471264		9426265		3.136412			Na		
Skewness	0774414		2270973		1039115			NA		
Kurtosis	2313977		7964623		3497230			NA		
Jarque-Bera	$\begin{aligned} & 4304248 \\ & 0116237 \end{aligned}$		67915130.000000		6849414			NA		
Probability			0.03	32559		NA				
Sum	$\begin{aligned} & 7781800 \\ & 7576165 \end{aligned}$				$\begin{aligned} & 6479900 \\ & 3109906 \end{aligned}$		605.9400			NA
Sum Sq. Dev.			344	2977				NA		
Observations	36		36		36			0		

Penjelasan mengenai 3 variabel DEPOSITO, IHSG, dan SUKUBUNGA, secara deskriptif dijelaskan rerata (mean), median, standar deviasi, keseluruhan merupakan pemusatan data, di luar Standar deviasi, yang termasuk dalam pemencaran data. Untuk mempelajari deskripsi data Stata, diuraikan sebagai berikut, dari data agus,1.dta, sebagai berikut.

no	sex	kel_usia	gizi	berat	perdarahan	perkembangan
1	laki-lak	$1-12$ bul	kurang	<2500	tidak	suspek
2	laki-lak	$13-36$ bu	kurang	<2500	tidak	suspek
3	laki-lak	$13-36 \mathrm{bu}$	kurang	<2500	tidak	suspek
4	laki-lak	$13-36$ bu	kurang	>2500	tidak	suspek
5	laki-lak	$13-36$ bu	kurang	<2500	tidak	suspek
6	laki-lak	$13-36$ bu	kurang	<2500	tidak	suspek
7	laki-lak	$1-12$ bul	kurang	<2500	tidak	suspek
8	perempua	$1-12$ bul	kurang	<2500	ya	suspek
9	perempua	$13-36$ bu	kurang	>2500	tidak	suspek
10	perempua	$13-36$ bu	kurang	<2500	tidak	suspek
11	perempua	$13-36$ bu	kurang	<2500	tidak	suspek
12	perempua	$1-12$ bul	kurang	<2500	ya	suspek
13	perempua	$13-36$ bu	kurang	<2500	ya	suspek
14	perempua	$13-36$ bu	kurang	<2500	tidak	suspek
15	perempua	$13-36$ bu	kurang	<2500	ya	suspek

16	laki-lak	13-36 bu	baik	<2500	tidak	suspek
17	laki-lak	$13-36 \mathrm{bu}$	baik	<2500	ya	suspek
18	laki-lak	1-12 bul	kurang	<2500	tidak	suspek
19	perempua	13-36 bu	kurang	>2500	tidak	suspek
20	laki-lak	1-12 bul	baik	<2500	ya	suspek
21	laki-lak	13-36 bu	kurang	<2500	tidak	suspek
22	perempua	13-36 bu	kurang	>2500	tidak	suspek
23	perempua	1-12 bul	kurang	<2500	tidak	suspek
24	perempua	$13-36$ bu	baik	<2500	tidak	suspek
25	perempua	13-36 bu	kurang	>2500	tidak	suspek
26	laki-lak	1-12 bul	baik	<2500	tidak	suspek
27	laki-lak	1-12 bul	baik	<2500	ya	suspek
28	laki-lak	$1-12$ bul	baik	<2500	tidak	suspek
29	laki-lak	1-12 bul	baik	<2500	tidak	suspek
30	laki-lak	$13-36 \mathrm{bu}$	kurang	<2500	tidak	suspek
31	laki-lak	$13-36$ bu	kurang	<2500	tidak	suspek
32	laki-lak	13-36 bu	kurang	<2500	tidak	suspek
33	laki-lak	13-36 bu	baik	<2500	tidak	suspek
34	laki-lak	13-36 bu	kurang	<2500	tidak	suspek
35	laki-lak	1-12 bul	kurang	<2500	tidak	suspek
36	perempua	$1-12$ bul	kurang	<2500	ya	suspek
37	perempua	13-36 bu	kurang	<2500	tidak	suspek
38	perempua	$13-36 \mathrm{bu}$	baik	<2500	tidak	suspek
39	perempua	13-36 bu	kurang	<2500	tidak	suspek
40	perempua	1-12 bul	baik	<2500	ya	suspek
41	perempua	13-36 bu	kurang	<2500	ya	suspek
42	perempua	13-36 bu	kurang	<2500	tidak	suspek
43	perempua	13-36 bu	kurang	<2500	ya	suspek
44	laki-lak	13-36 bu	baik	>2500	tidak	suspek
45	laki-lak	13-36 bu	baik	>2500	ya	suspek
46	laki-lak	1-12 bul	kurang	>2500	tidak	suspek
47	perempua	13-36 bu	kurang	>2500	tidak	suspek
48	laki-lak	1-12 bul	baik	<2500	ya	suspek
49	laki-lak	$13-36 \mathrm{bu}$	kurang	<2500	tidak	suspek
50	perempua	13-36 bu	kurang	>2500	tidak	suspek

Jawab:

1. Jawaban untuk Deskripsi Numerikal
a. File >open> data

Selanjutnya pilih statistic> summaries tables and test> summary statistic > masukan semua variable sex kel_usia gizi berat pendarahan perkembangan $>$ pilih display standard $>$ hasilnya sebagai berikut

Summarize sex kel_usia gizi berat perdarahan perkembangan
Variable I Obs Mean Std. Dev. Min Max

Sex | 142.5774648 .495711301
kel_usia | 142.3943662 .490444101
gizi | 142.5211268 .501321801
berat | 142.6408451 .48145101
perdarahan | 142.1971831 .399280101
perkembangan | 142.3943662 .490444101

11	KAMTO	21	LAKI
12	LUNA	25	PEREMPUAN
13	MARSINAH	22	PEREMPUAN
14	NOPIAH	23	PEREMPUAN
15	OPIK	26	LAKI

Pertanyaan:
Buatlah deskripsi untuk data tersebut.
Jawab:

1. buat data XLS menjadi Stata
2. proses stata
tabstat umur, statistics (mean sd var max min) by (JEN_KEL)

jen_kel	mean	sd	max	min
laki-laki	24,3	1,825	27	21
perempuan	23,3	1,52	25	22
total	24,13	1,76	27	21

Latihan 4 (menggunakan Deskripsi kategorik)

Dengan menggunakan data sebagai berikut:

no	nama	umur	JEN_KEL
1	AGUS	25	LAKI
2	BAGUS	26	LAKI
3	CHARLI	26	LAKI
4	DJOKO	25	LAKI
5	EDI	24	LAKI
6	FARDI	22	LAKI
7	GATOT	23	LAKI
8	HADI	27	LAKI
9	ISMAIL	24	LAKI
10	JONET	23	LAKI

BAB III
 UJI NORMALITAS DATA MENGGUNAKAN STATA

Tujuan Instruksional Umum:

Karyasiswa mengetahui persyaratan data normal untuk analisis.

Tujuan Instruksional Umum:

Karyasiswa mampu membuat data normal.

I. Konsep

Data merupakan sekumpulan bahan mentah yang memiliki format data numerik, maupun string. Data memiliki sebaran normal jika nilai mean adalah nol, sebagaimana sebaran data disebut normal digambarkan sebagai berikut:

Waktu	Jml minyak (Unit)	jarak (km)	Frekuensi kirim/ minggu
45	100	45	6
80	90	65	5
60	80	70	7
55	85	65	8
40	95	50	8
45	90	55	5
40	85	45	10
30	95	35	7
35	85	40	8
40	105	45	5
40	130	50	5
55	155	65	5
65	120	75	4
40	95	50	6

35	100	45	8
50	100	80	6
55	110	65	6
60	115	70	4
15	130	25	5
45	100	60	5
45	100	50	4
45	100	55	6
35	140	45	8
50	145	65	8
30	125	40	7
35	125	45	6
50	120	60	6
45	110	58	5
40	115	50	5
30	110	35	7

Dihitung dengan menggunakan SPSS

1. Data waktu

Keterangan : persebaran normal > data normal

2. Jumlah

II. Perhitungan dengan Kolmogorov dan Smirnoff

Selain dengan menggunakan gambaran dari Grafik distribusi data, maka dalam penghitungan dapat dengan menggunakan Kolmogorov Smirnoff, Saphiro wilks. Dapat dilihat dengan menggunakan KS, diperoleh output sebagai berikut:

Output:

One-Sample Kolmogorov-Smirnov Test					
		waktu	jml	jarak	frerk
N		30	30	30	30
Normal Parameters ${ }^{\text {a }}$.	Mean	44.5000	108.5000	53,4333	6.1667
	Std. Deviation	12.54990	18.98956	12.91266	1.48750
Most Extreme Differences	Absolute	. 151	. 173	. 138	. 184
	Positive	. 151	. 173	. 138	. 184
	Negative	-. 093	-. 075	-. 115	-. 124
Kolmogorov-Smirnov Z		. 826	. 946	. 757	1.005
Asymp. Sig. (2-tailed)		. 503	. 332	. 616	264

a. Test distribution is Normal.
b. Calculated from data.

Keterangan:
Test data berdistribusi normal, di mana $\mathrm{p}>0.05$, untuk variable latent.
III. Penggunaan STATA untuk uji normalitas

1. Ubah data dari eksel atau format lain ke stata, atau dengan mengetikan kembali di Stata
2. Pengujian dengan Saphirowilk
3. Pengujian dengan menggunakan Ladder, yang disarankan dalam STATA.

Penyelesaian:

Buka lembar kerja stata > lanjut dengan memasukan data kirim dta. $>$ cek data dengan cara Data $>$ browse $>$ langkah tersebut diperoleh luaran sbb:

Langkah lanjut adalah uji normalitas dengan stata $>$ misal Saphiro wilk Statistik $>$ distribusi plot and test $>$ saphiro wilk normaly test $>m a s u k a n$ data $>\mathrm{Ok}$

lotes：${ }_{\text {1．Wilcode is supported：see neip unicode advice．}}$
use＂D：\STATAldata aqus $/ k i r i m . d t a "$ ，clear
friik isl vaktu jarak frek

Shaplto－witk W test for normal data					
Variable	083	W	v	z	Prob
m1	30	0.95526	1.422	0.728	0.23328
vaktu	30	0.97217	0.885	－0．254	0.60014
jarak	30	0.98973	0.326	－2．313	${ }^{6} .989968$
frek	30	0.95604	1.397	0.692	0.24453

Output dengan saphiro
a．wilk waktu
Shapiro Wilk W test for normal data

Variable	Obs	W	V	z	Prob＞z	
waktu	30	0.97217	0.885	-0.254	0.60014	normal

b．jumlah
wilk jml
Shapiro

Variable	Obs	Wilk W test for normal data			
			V	z	Prob＞z
jml	30	0.95526	1.422	0.728	0.23328

c．jarak

－ $3 x=1 \times$ jazak					
Shapizo－Nilk 佼 teat for nozmal data					
$\mathrm{V}=\mathrm{xizec}$（e	Cbs	＊	V	$=$	Fzab＞z
まニxa\％	30	0.98973	0.326	－2．315	0.98968
Shapizo－Wilk w test for normal datz					
Vaxiable	Obs	\％	v	＝	E＝ab＞z
fres	30	0.95004	1.397	0.692	0.24453

Keterangan：

Dengan memperhatikan nilai p variable latent >0.05 maka distribusi data normal．

IV．Uji Ladder（dalam STATA paling disarankan）

waktu	Transformation	formula	chi2（2）	P（chi2）
	cubic	waktu＊3	24.26	0.000
	square	waktu＾2	14.24	0.001
	identity	waktu	4.21	0.122
	square root	sqrt（waktu）	3.76	0.152
	10 g	\log（waktu）	10.40	0.006
	1／（square root）	1／sqrt（waktu）	20.30	0.000
	inverse	1／waktu	29.54	0.000
	1／square	1／（waktu＾2）	41.07	0.000
	1／cubic	1／（waktu＾3）	45.39	0.000

jumlah	Transformation	formula	chi2(2)	P(chi2)
	cubic	$j m 1^{\wedge} 3$	9.61	0.008
	square	$j \mathrm{ml}{ }^{\wedge} 2$	5.90	0.052
	identity	jml	2.89	0.236
	square root	sqrt $(j \mathrm{ml})$	1.76	0.414
	\log	$\log (j m 1)$	1.19	0.552
	1 (square root)	1/sqrt (jml)	0.99	0.610
	inverse	1/jml	0.97	0.617
	1/square	1/(jml^2)	1.13	0.567
	1/cubic	1/(jm1^3)	2.13	0.344
	-			
jarak	Transformation	formula	chi2 (2)	P (chi2)
	cubic	jarak^3	5.64	0.060
	square	jarak^2	1.98	0.371
	identity	jarak	0.11	0.944
	square root	sqrt (jarak)	0.56	0.756
	\log	\log (jarak)	3.86	0.145
	1/(square root)	1/sqrt (jarak)	8.46	0.015
	inverse	1/jarak	14.24	0.001
	1/square	1/(jarak^2)	26.05	0.000
	1/cubic	1/(jarak^3)	35.07	0.000
frek	Transformation	formula	chi2 (2)	P(chi2)
	cubic	frek^3	14.05	0.001
	square	frek ${ }^{\text {2 }}$	7.03	0.030
	identity	frek	2.03	0.363
	square root	sqrt (frek)	1.02	0.601
	10 g	\log (frek)	0.86	0.651
	1/(square root)	1/sqre (frek)	0.88	0.643
	inverse	1/frek	1.13	0.568
	1/square	1/(frek*2)	3.90	0.142
	1/cubic	1/(frek ${ }^{\text {(}}$)	7.78	0.020

Keterangan:
Perhatikan pada identity, variable latent memiliki $p>0.05$, maka data berdistribusi normal.

Latihan I
Menggunakan data sebagai berikut:

no	kelompok	umur	sex	ret1	ret2	delta_ret	hb1	hb2	delta_hb
1	perlakuk	7	laki-lak	0.3044	0.6826	0.3782	12.6	12.8	0.2
2	perlakuk	7	laki-lak	0.7405	1.1183	0.3778	12	12.6	0.6
3	perlakuk	7	laki-lak	0.4859	0.8191	0.3332	12.1	12.5	0.4
4	perlakuk	7	perempua	0.7191	0.9549	0.2358	12.6	12.8	0.2
5	perlakuk	8	laki-lak	0.3573	0.7025	0.3452	12.2	13	0.8
6	perlakuk	8	laki-lak	0.3307	0.6382	0.3075	12.2	12.4	0.2
7	perlakuk	8	perempua	0.5077	1.159	0.6513	12.6	12.8	0.2
8	perlakuk	9	laki-lak	0.4942	0.954	0.4598	12.6	12.8	0.2
9	perlakuk	9	laki-lak	0.7609	1.0202	0.2593	12.4	12.9	0.5
10	perlakuk	9	perempua	0.7092	1.0862	0.377	12.5	12.6	0.1
11	perlakuk	9	perempua	0.5891	0.7362	0.1471	12.3	12.6	0.3
12	perlakuk	9	perempua	0.5173	1.096	0.5787	12.1	12.5	0.4
13	perlakuk	10	laki-lak	0.6684	1.2491	0.5807	12.3	12.4	0.1
14	perlakuk	10	laki-lak	0.8256	1.2325	0.4069	14.9	15.2	0.3
15	perlakuk	10	laki-lak	0.6164	0.8112	0.1948	12.8	13.2	0.4
16	kontrol	7	laki-lak	1.2915	0.6845	-0.607	12.7	12.6	-0.1
17	kontrol	7	laki-lak	0.6155	0.6692	0.0537	13.3	13.3	0
18	kontrol	7	laki-lak	0.4667	0.3983	-0.0684	12.3	12.1	-0.2
19	kontrol	7	perempua	0.2894	0.3705	0.0811	12.1	12	-0.1
20	kontrol	8	laki-lak	0.5855	0.7787	0.1932	12.1	12.6	0.5
21	kontrol	8	laki-lak	1.0044	0.6968	-0.3076	13.2	13.4	0.2
22	kontrol	8	perempua	0.8483	0.7107	-0.1376	11.8	11.8	0
23	kontrol	9	laki-lak	0.5674	0.4168	-0.1506	12.2	11.9	-0.3
24	kontrol	9	laki-lak	0.8195	0.8365	0.017	12.8	12.9	0.1
25	kontrol	9	perempua	0.9652	1,0579	0.0927	12.3	12.6	0.3
26	kontrol	9	perempua	0.8389	0.7331	-0.1058	12	12.1	0.1
27	kontrol	9	perempua	0.9862	1.1687	0.1825	11.4	12	0.6
28	kontrol	10	laki-lak	0.1079	0.631	0.5231	10.6	10.5	-0.1
29	kontrol	10	laki-lak	0.5197	0.4612	-0.0585	10.7	11.1	0.4
30	kontrol	10	laki-lak	0.4821	0.675	0.1929	11.3	11.8	0.5

Ujilah normalitas menggunakan ladder (disarankan)

umur	Transformation	formula	chi2 (2)	P (chi2)	tidak normal
	cubic	umur^3	5.31	0.070	
	square	umur^2	6.18	0.045	
	identity	umur	6.95	0.031	
	square root	sqrt (umur)	7.23	0.027	
	10 g	\log (umur)	7.43	0.024	
	1/(square root)	1/sqrt (umur)	7.54	0.023	
	inverse	1/umur	7.57	0.023	
	1/square	1/(unur*2)	7.45	0.024	
	1/cubic	1/(umur ${ }^{\text {3 }}$)	7.21	0.027	

Latihan II

Menggunakan data sebagai berikut:

	no	***	kel_usis	94ni	basat	perdarahan	perkembangan
1	1	poreeppan	1	belt	*68	sidat	1
2	2	paroupuen	-	batk	768	21dek	1
3	2	paremevan	0	benk	\%6	sidex	1
4	-	perompuan	-	baik	*90	tidak	1
-	1	peremepan	-	belk	40	Hidak	1
6	6	perampuan	-	beak	965	ctaet	1
,	7	parmepuan	1	bais	768	sidat	1
-	E	1aktioki	1	batk	3 sf	y*	1
,	,	2watioki	0	batk	70	cidat	1
10	20	tektiaki	0	batk	458	shaer	1
11	11	2akiLaki	-	batk	265	21dax	1
12	12	1atisat	1	bask	266	\%*	1
13	13	laktiaki	-	buth	268	\%	1
14	14	1aktiakt	0	beak	*66	vidak	1
15	15	1akiluki	-	batk	765	\%	1
16	16	perompuan	-	buruk	265	crank	1
17	17	perempaun	-	buruk	765	ya	1
18	10	perempuan	1	baik	266	tidak	1
19	19	10kL10kt	-	batk	>0	Etask	1
20	20	perempuan	1	butuk	366	ye	1

Sumber data : latihan 2 stata

Pertanyaan: ujilah normalitas data dengan menggunakan STATA

Jawab:

1. Buka program stata sebagai berikut:

2. Pilih dat yang dicari dengan cara File $>$ open $>$ D $\langle>$ stata $>$ pilih $>$ latihan2 $>$ Selanjutnya buka Data $>$ browser $>$ keluar data sebagai berikut:

	no	***	*st_unis	${ }_{\text {q12 }}$	sorat	peramenan	percembangan
1	1	permeman	1	baix	255	${ }^{\text {tidak }}$	1
2	2	sorecgas	-	bat	st	teas	1
,	,	perampuen	-	mat	*	Has*	1
,	,	perameven	0	mar	>0	нas*	1
-	-	pereapuen	0	wir	\cdots	14**	1
,	-	perampatan	-	bat	\cdots	viscr	1
,	,	peremouen	1	bat	-s	vas\%	t
,	,	1041tin	1	bat	*	v*	'
,	,	ıenstor	-	mar	*\%	n***	1
10	10	206ton	-	mat	ss	Hast	${ }^{1}$
$:$	11	1261tat	-	beix	-6	ess*	1
12	12	10ヶ1tat	1	max	-6s	v*	${ }^{1}$
14	13	10x+10x4	-	bate	\cdots	v	1
14	14	16xitat	-	beik	25	tan*	1
15	16	10xitan	-	bent	-36	r	:
16	16	parampuen	-	turus	\cdots	stast	1
17	17	porempan	-	suruk	255	\%	1
18	16	perempusa	1	benx	26	tsas	1
:	${ }^{4}$		-	bent	>0	nes*	1
20	$: 0$	perempan	1	turuk	**	v	

3. Sekarang uji deskripsi

Pada command tuliskan
Summarize sex kel_usia berat gizi perdarahan perkembangan > enter Hasil output

7aritblo	03,	nean	3xd. Dev.	Min	Mex
mex	20	. 55	. 5104178	0	1
tel_usia	20	. 3	. 4701623	0	1
gizi	20	. 85	. 1663475	0	1
berat	20	. 85	. 3663475	0	1
perdaraban	20	. 3	. 4701623	0	1
verkeabanan	20	1	0	1	1

```
Keterangan:
    Uraian matriks antara variable latent dengan Mean, std dev, min
    dan maksimum
    Bagaimana jika menggunakan tidak dengan command?
```

1. Pilih Statistic $>$ Summarize table and text $>$ other tables $>$ compact table >

2. Pilih Mean, std dev, min, maks,

Output sebagai berikut

| statg | gex | rel_ugia | gizi | berat | pardar~n | pertem~n |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| mean | .55 | .3 | .85 | .85 | .3 | 1 |
| sd | .5104179 | .4701623 | .3663475 | .3663475 | .4701623 | 0 |
| \min | 0 | 0 | 0 | 0 | 0 | 1 |
| man | 1 | 1 | 1 | 1 | 1 | 1 |

3．Bagaimana untuk menguji normalitas data variable latent．
a．gunakan ladder $>$ sehingga command dituliskan ladder sex kel＿ usia gizi berat perdarahan perkembangan

output

tranaforination	tormula	chiz（2）	P（coniz）
cubla	nnx－3	2 A .56	0.000
squaro	sex＾2	20.56	
fanneity	anx	20.56 28.56	O．000 0.000
square root	sare（smx）	0．56	
109	log（130x）		
1／aquare rast	1／84ce（anx）		
Nomesor			
1／cubic	1／（asax－3）	－	
－Laddar knt＿umin			
teanatacmation	tormula	－h12（2）	Prabiz）
cubre	kat＿uata＞3	6.13	0.047
square	no1－4n1．n ${ }^{2}$	6.13	0.047
munntity	$\mathrm{k}^{1} \mathrm{t}$－uria．	6.13	\bigcirc
gquarn co $^{\text {a }}$	ATEE（xel＿usia）	6.13	0.047
10%	10g（kent Ustay		
1／（aquax，ruot）			
thynesa	1／kn1－0．1．		
1／mquarn	1／（601＿4atanz		
1／cubic	1／（k＋1＿4ala 3）	－	
hadane ghet			
Teanmfurimation	rommua	－haz（2）	（－（anta）
cubs＂	gizin3	12.50	0.002
aquare	4121～2	12.58	
1dmatiey	91\％1	12.808	0.00%
quar＂		12.53	0.002
100	1usfigtat）		
1／sstumen mootl	1／a75E（g1z1）		
inveria＊	1／aiz1		
1／ヵquare	1／1920，		
$1 /$ awhte	1／19172－31		
adtor			
Txanatozmation	rormuan	chだ21	P（antz）
uabre	beratM	12.58	0.002
aquaxa	bncatez	12.50	0.002
1dmbetity	berat	12.58	0.002
pruat	wque（beemat）	12.5 m	0.00
109	100 （bemat）		
1／（syuara moot）	1／ayer（barae）		
1．14ery	1／batat		
1／atuaco	1／（baratiza）		
1／eubra	：／（bevet－3）		
－Ladcor perdarahan			
nnmermarion	cormuta	chi2（2）	Ptch12）
cubia	purdaram－3	6.13	0.047
square	pardar－n＾2	6.13	0.047
taphtiey	perdaken	6．13	－0．047
\％Tluay mot			
	1／シ̊ke（pardar－n）		
tnverroe	1／pheanen		
1／aquare	1／（perdar～n～2）		
teubta	1／（purdev－n－3）	－	
－tactiox porkumbangan			
anstovmation	cormu	cht2：2，	P（oh22）
auter	packsm－n－3		
aguaza．	prrknm－n＂z		
temstity	parknown		
－quaze	－4Et（porkem－n）		
1／10¢4warn Foots			．
	1／perkwn～n		
1／atuase	1／（perkmm－n－2）		
1／cubto	1／（pockem－n－3）	．	．

BAB IV
VALIDITAS DAN RELIABELITAS

Tujuan Instruksional Umum：

Karyasiswa mengetahui pengujian Validitas dan reliabelitas．

Tujuan Instruksional khusus：

Karyasiswa mampu dan memahami pengujian Validitas dan reliabelitas．

Konsep

Pengujian data dalam bentuk distribusi data dengan menggunakan pemusatan sentral，maupun dengan menggunakan pemencaran data． Pengujian validitas dan reliabelitas data，dalam perhitungan dengan menggunakan varian data，diuji dengan validiitas．Validitas dengan menggunakan Validitas Konstruk，Average Variance Extracted（AVE）． Dalam melaksanakan dengan pendekatan CFA，dihitung Reliabelitas dan Validitas dari konstruk laten，sebagaimana disajikan pada rumus berikut．Penghitungan reliabelitas kontruk dan variance ekstrak menggunakan rumus sebagai berikut：

$$
\text { Construct-realibility }=\frac{\left(\sum \text { standar loading }\right)^{2}}{\left(\sum \text { standar loading }\right)^{2}-\sum \xi ;}
$$

di mana：

Standar loading，diperoleh dari setiap indikator dari perhitungan komputer
§j adalah kesalahan pengukuran dari setiap indikator
Alat ukur reliabelitas yang kedua adalah sebagai berikut， dengan standar 0，50．

Variance-extracted $=\sum$ standar loading ${ }^{2}$ \sum standar loading ${ }^{2}-\sum \xi \mathrm{j}$

Dalam perhitungan dengan menggunakan Program STATA, maka seperti halnya penggunaan PLS .3.

Latihan.1.

Dalam kajian mengenai hubungan antara Pengaruh Lingkungan sebagai dimensi pendukung atas Pemahaman dan Pengetahuan masyarakat terhadap pentingnya pengembangan budaya gerabah di Kasongan, diambil responden secara acak sebanyak 150 orang, data diperkirakan tidak berdistribusi normal. Hitunglah bagaimana besarnya Average Validitas, dan C Reliabilitas dari data tersebut, selesaikan dengan menggunakan STATA program. Data sebagai berikut

PL1	PL2	PL3	PL4	PP1	PP2	PP3	PP4
4	4	4	4	4	4	4	4
4	5	5	5	4	5	4	4
4	4	4	4	4	4	4	4
4	4	4	3	4	4	3	4
5	5	5	5	5	5	4	4
5	5	4	4	4	4	4	5
5	5	5	5	5	4	4	5
4	4	4	5	4	5	5	5
4	4	4	4	4	4	4	4
4	4	5	4	4	3	4	4
4	4	4	4	4	4	4	4
4	4	4	5	5	5	5	5
4	4	4	4	4	4	4	4
5	4	4	4	4	4	4	4
4	4	3	4	4	3	3	4
4	4	4	4	4	4	4	4
5	4	5	4	4	4	4	4
5	5	5	5	5	5	4	4
4	4	4	4	4	3	4	4
4	4	4	4	4	4	4	4

4	4	5	4	4	4	4	4
4	4	5	4	3	4	4	4
5	5	5	4	4	5	4	5
4	4	4	4	4	4	4	4
4	5	4	4	4	4	4	4
4	4	4	4	4	4	4	4
4	4	4	4	4	3	4	4
4	4	4	5	5	4	4	4
4	4	4	4	4	4	4	4
5	5	5	5	5	4	4	5
5	5	5	5	5	5	5	5
5	5	5	5	5	4	4	5
5	4	4	5	5	4	4	4
4	4	4	5	5	4	4	4
4	4	3	4	4	4	4	4
5	5	5	4	4	4	4	4
4	4	5	4	4	4	4	4
5	5	4	5	5	4	4	4
5	4	4	4	4	4	4	4
5	4	5	4	4	4	4	4
4	4	4	4	4	4	4	5
4	4	5	5	5	5	5	5
5	5	5	4	4	4	4	
4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4
5	5	4	4	4	4	4	4
4	5	5	5	5	4	4	5
4	4	5	4	4	4	4	4
5	4	5	4	4	4	4	4
5	5	5	5	5	5	5	5
4	4	4	4	4	4	4	4
4	4	4	4	4	5	4	
4	4	4	4	4			
4	4	4	4	4			
4	4	5	5	5	5		
4	4	4	4	5			
4	4	4	4	4	4	4	4

5	5	4	5	5	4	4	4
5	5	4	5	4	5	5	5
4	4	4	4	4	4	4	4
5	5	5	5	5	4	4	5
4	4	4	4	4	4	4	4
4	4	4	4	4	5	5	4
4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	5
5	5	5	5	5	4	4	5
5	5	5	4	4	4	4	4
5	5	5	5	5	5	5	5
4	4	4	4	4	4	4	4
4	4	5	4	4	4	4	4
5	5	5	5	5	5	5	5
5	5	5	4	5	4	4	4
4	4	4	4	4	4	4	4
4	5	5	5	5	5	5	
4	4	4	4	4	4	4	4
4	5	4	4	4	4	4	5
4	4	4	4	5	5	4	4
4	5	5	4	4	4	4	4
4	4	5	4	4	5	5	4
5	5	5	5	5	4	4	4
5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5
4	4	5	4	4	5	5	5
4	4	5	4	5	5	5	5
4	4	4	4	4	4	4	4
5	4	5	4	4	4	4	4
4	4	4	3	4	3	4	4
4	4	5	5	5	4	4	5
4	5	5	4	4	4		
4	4	4	4	4			
4	4	5	5	4	4	4	4
4	4	4	4	4	4	4	4

4	4	4	4	4	4	4	4
5	5	4	5	5	4	4	4
5	5	5	5	5	5	5	5
5	4	4	4	4	4	4	4
5	5	5	5	5	5	5	4
5	5	5	5	4	4	4	4
5	5	4	4	4	4	4	4
5	4	3	5	4	4	4	4
4	4	5	4	4	4	4	4
5	5	5	4	4	5	5	5
4	4	4	4	4	4	4	4
5	5	5	5	5	4	4	5
4	4	4	4	4	4	4	4
4	5	5	5	4	5	4	4
4	4	4	4	4	4	4	4
4	4	4	3	4	4	3	4
5	5	5	5	5	5	4	4
4	4	5	4	4	4	4	4
5	5	4	4	4	4	4	5
4	4	4	4	4	4	4	4
4	5	4	4	4	4	3	4
4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
4	4	4	3	3	4	4	4
4	4	4	4	4	4	4	4
4	4	4	4	4	4	3	4
4	4	4	4	4	4	4	4
5	5	4	4	4	4	4	4
4	4	5	4	4	4	4	4
4	5	5	5	5	5	4	
4	4	4	4	4	5		
4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4

5	5	5	5	5	5	4	5
5	5	5	5	4	5	5	5
5	5	5	5	5	4	4	4
5	5	5	5	5	4	4	5
5	5	5	5	5	4	4	5
5	5	5	5	4	5	5	5
5	5	4	5	5	5	5	5
4	4	4	5	5	5	5	4
4	4	5	5	5	5	5	4
4	4	4	5	5	5	5	5
5	4	4	5	5	5	5	5
5	5	5	5	5	5	5	5
5	4	4	5	5	5	5	5
5	5	4	5	4	5	5	5
5	4	4	5	5	5	5	5
5	5	4	5	4	5	5	5

1. Buka Stata
2. Proses data Validitas

Dengan cara sebagai berikut, pada command tuliskan
Factor pl1 pl2 pl3 pl4 pl5 pl6 pl7 pl8 > enter
3. Output sebagai berikut:
factor pl1 pl2 pl3 pl4 pl5 pl6 pl7 pl8
(obs=149)
Factor analysis/correlation Number of obs $=149$
Method: principal factors Retained factors $=4$
Rotation: (unrotated) Number of params $=26$
Factor Eigenvalue Difference Proportion Cumulative
Factor1 3.847423 .046530 .83320 .8332
Factor2 0.800890 .373780 .17341 .0067
Factor3 0.427110 .401260 .09251 .0992
Factor4 0.025850 .075570 .00561 .1048

Factor5 -0.04972 0.05704-0.0108 1.0940
Factor6 -0.10675 0.02912-0.0231 1.0709
Factor7 -0.13587 0.05558-0.0294 1.0415
Factor8 -0.19145 , -0.0415 1.0000

LR test: independent vs. saturated: chi2 $(28)=646.78$ Prob $>$ chi2 $=$ 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Factor4 Uniqueness

$$
\begin{array}{llllll}
\text { pl1 } & 0.6714 & 0.3250 & 0.1928 & -0.0716 & 0.4013 \\
\text { pl2 } & 0.7113 & 0.3105 & 0.2987 & 0.0076 & 0.3084 \\
\text { pl3 } & 0.5488 & 0.1334 & 0.1792 & 0.1135 & 0.6360 \\
\text { pl4 } & 0.8118 & 0.1082 & -0.3311 & 0.0039 & 0.2196 \\
\text { p15 } & 0.6918 & 0.2534 & -0.3884 & 0.0155 & 0.3061 \\
\text { pl6 } & 0.7356 & -0.4554 & 0.0693 & 0.0413 & 0.2450 \\
\text { pl7 } & 0.6748 & -0.5323 & 0.0127 & -0.0214 & 0.2606
\end{array}
$$

3a. Dapat menggunakan cara sebagai berikut:
Statistik > Multivariance analysis $>$ Factor and PC $>$ Factor analysis $>$ masukan Pl1 sampai pl8 $>$ enter

Output:

factor pll p12 p13 p14 p15 p16 p17 p18
($0 \mathrm{bs}=149$)

Factor analysis/ Method: prin Rotation:	elation 1 factory ated)		Number of obs Retained factors Number of params	$\begin{array}{lr}= & 149 \\ = & 4 \\ = & 26\end{array}$
Factor	Eigenvalue	Difference	Proportion	Cumulative
Factor 1	3.84742	3.04653	0.8332	0.8332
Factor2	0.80089	0.37378	0.1734	1.0067
Factor 3	0.42711	0.40126	0.0925	1.0992
Fector 4	0.02585	0.07557	0.0056	1.1048
Factors	-0.04972	0.05704	-0.0108	1.0940
Factor 6	-0.10675	0.02912	-0.0231	1.0709
Factor 7	-0.13587	0.05558	-0.0294	1.0415
Factor 8	-0.19145	.	-0.0415	1.0000

Factor loading, (pattern matrix) and unique variances

Variab1e	Factor1	actor2	Factor3	Factor4	Uniqueno3s
p11	0.6714	0.3250	0.1928	-0.0716	0.4013
p12	0.7113	0.3105	0.2987	0.0076	0.3084
p13	0.5488	0.1334	0.1792	0.1135	0.6360
p14	0.8118	0.1082	-0.3311	0.0039	0.2196
p15	0.6918	0.2534	-0.3884	0.0155	0.3061
p16	0.7356	0.4554	0.0693	0.0413	0.2450
p17	0.6748	0.5323	0.0127	-0.0214	0.2606

Keterangan:

1. Untuk menguji apakah indikator dengan PCA valid atau tidak, dibandingkan dengan SLF 0,5
2. Terlihat semua indikator dinyatakan signifikan.

2. Pengujian CR, dengan STATA Window

Statistic > multivariant analysisi > cronbach alpha > masukan indicator > Ok

```
. alpha pll pl2 pl3 pl4 p1S pl6 p17 pls
Test gcale = mean(unstandardized items)
```

Average interitem covariance:	-1221107
Number of iteme in the scale:	8
Scale reliability coefficient:	0.8727

Keterangan: CR 0.8727 > 0.7, maka dinyatakan reliable, dapat dibandingkan dengan 0.6 , yaitu angka Nunnaly.

BAB V
 UJI ASUMSI KLASIK

Tujuan Umum:

Karyasiswa mengenali adanya asumsi klasik dalam perhitungan regresi.

Tujuan Khusus:

Karyasiswa mampu untuk menghitung uji asumsi klasik.

1. Konsep

Tujuan pengujian asumsi klasik adalah untuk memberikan kepastian bahwa persamaan regresi yang didapatkan memiliki ketepatan dalam estimasi, tidak bias dan konsisten. Perlu diketahui, terdapat kemungkinan data aktual tidak memenuhi semua asumsi klasik ini. Beberapa perbaikan, baik pengecekan kembali data outlier maupun recollector data dapat dilakukan.

Uji asumsi klasik yang dikemukakan dalam modul ini antara lain: uji multikolinearitas, uji autokorelasi, uji heteroskedastisitas, uji normalitas dan uji linearitas. Suatu analisis yang mempunyai nilai linier bagus dan memiliki bias rendah atau disebut dengan Best Linier Unbiased Estimator (BLLUE), dapat dicapai bila memenuhi dengan adanya asumsi klasik dicirikan dengan adanya:

1. Model regresi dispesifikasikan dengan benar.
2. Error menyebar normal dengan rataan nol dan memiliki suatu ragam (variance) tertentu.
3. Tidak terjadi heteroskedastisitas pada ragam error.
4. Tidak terjadi multikolinieritas antara peubah bebas.
5. Error tidak mengalami autokorelasi (error tidak berkorelasi dengan dirinya sendiri).

Ada enam uji asumi yang harus dilakukan terhadap suatu model regresi, yaitu: Uji Normalitas, uji homogenitas, uji linieritas, uji multikolinieritas, uji heterokaditas, dan uji autokorelasi. Ada beberapa ahli menyebutkan bahwa dari keenam syarat untuk memenuhi model regresi tersebut terbagi dua kelompok yaitu: uji asumsi klasik (Normalitas, Homogenitas dan Linieritas) dan uji penyimpangan asumsi klasik (Multikolineritas, Heteroskedasitas dan Autokorelasi).

1.1. Uji Asumsi Klasik Normalitas

Uji asumsi klasik normalitas, dilakukan bagi persamaan yang sifatnya parametrik, seperti halnya hubungan yang sifatnya regresif. Di mana antara variable eksogeneous berpengaruh pada endogeneous

Persebaran data yang normal, dijadikan indikator pertama dalam pengujian. Dalam pengujian normalitas data, dapat dilakukan dengan model Kolmogorov Smirnoff, ataupun menggunakan program eviews. Sebagai contoh data di bawah ini.

Waktu	Jml minyak (Unit)	jarak (km)	Frekuensi kirim/ minggu
45	100	45	6
80	90	65	5
60	80	70	7
55	85	65	8
40	95	50	8
45	90	55	5
40	85	45	10
30	95	35	7
35	85	40	8
40	105	45	5
40	130	50	5
55	155	65	5

65	120	75	4
40	95	50	6
35	100	45	8
50	100	80	6
55	110	65	6
60	115	70	4
15	130	25	5
45	100	60	5
45	100	50	4
45	100	55	6
35	140	45	8
50	145	65	8
30	125	40	7
35	125	45	6
50	120	60	6
45	110	58	5
40	115	50	5
30	110	35	7

1. Untuk Uji Normalitas dengan menggunakan SPSS

1. Ubahlah data ini dalam format Sav, dan beri nama normalitas
2. Kemudian proses dengan cara Analisa $>$ non parametric test $>$ legacy dialog > sampel KS > OK
3. Pindahkan semua variabel ke kolom kanan $>$ klik normal $>$ Ok dan akan keluar luaran sebagai berikut:

Variable	Obs	$\operatorname{Pr}($ Skewness $)$	Pr (Kurtosis)	adjchi2(2)	Prob>chi2
waktu	30	$\mathbf{0 . 2 3 9 9}$	$\mathbf{0 . 1 0 3 5}$	$\mathbf{4 . 2 1}$	$\mathbf{0 . 1 2 2 1}$
jml	30	$\mathbf{0 . 1 0 5 2}$	$\mathbf{0 . 8 9 9 0}$	$\mathbf{2 . 8 9}$	$\mathbf{0 . 2 3 6 0}$
jarak	30	$\mathbf{0 . 9 2 8 0}$	$\mathbf{0 . 7 4 4 7}$	$\mathbf{0 . 1 1}$	$\mathbf{0 . 9 4 4 5}$
frek	30	0.1717	$\mathbf{0 . 9 7 2 7}$	$\mathbf{2 . 0 3}$	$\mathbf{0 . 3 6 2 8}$

Kesimpulan:

Nilai Probability VL >0.05, maka dinyatakan seluruh data VL berdistribusi Normal.

```
atau dengan cara :
Statistik > summary table > pilih distribution plots > pilih
skewness > masukan variable laten
```

2. Cara menggunakan Saphiro wilk
3. pada command tulisakan > swilk waktu jml jarak frek

Penjelasan :
Nilai probabiltas Variable Latetnt waktu jml jarak dan frek pvl > 0.05 dinyatakan seluruh data VL berdistribusi normal.

atau dengan cara:

Statistik > summary table > pilih distribution plots > pilih Shapiro masukan variable laten

2. Heterokadisitas

Dalam analisis regresi linier berganda, salah satu asumsi yang harus dipenuhi agar taksiran parameter dalam model tersebut bersifat BLUE adalah var (ui) $=\sigma$ (konstan), yaitu semua sesatan mempunyai
variansi yang sama. Apabila var (ui) $\neq \sigma$, maka varians bersifat heteroskedastisitas. Apabila terjadi heteroskedastisitas, penaksir OLS tetap linier dan tak bias, tetapi tidak lagi mempunyai varians minimum yang terbaik sehingga penaksir-penaksir OLS menjadi tidak efisien. Deteksi heteroskedastisitas dapat dilakukan dengan beberapa metode, yaitu:

1. Metode Grafik, Scatter plot didapat dengan cara memetakan nilai ZPRED (prediksi) dengan SRESID (residual). Model yang baik didapatkan jika tidak terdapat pola tertentu pada grafik.
2. Uji Park dilakukan dengan cara meregresikan kembali variabel independen awal dengan variabel dependen diganti dengan \log dari residual kuadrat.
3. Uji white dilakukan dengan cara meregresikan residual kuadrat sebagai variabel dependen dengan variabel dependen ditambah dengan kuadrat variabel independen, kemudian ditambahkan lagi dengan perkalian dua variabel independen.
4. Uji Glejser dilakukan dengan cara meregresikan absolute residual sebagai variabel dependen dan variabel independent diambil dari variabel independent pada model awal.
5. Uji Spearman's Rank Correlation, dll Prosedur pengujian dilakukan dengan hipotesis sebagai berikut:

Hipotesis : H0 : Tidak ada heterokedastisitas H1 : Ada heterekodastisitas Kriteria ujinya adalah jika obs*R-square $>\mathrm{X}^{2}$ atau P -value $<\alpha$, maka H 0 yang menyatakan tidak adanya heterokaditas ditolak. Beberapa alternatif solusi jika model menyalahi asumsi heteroskedastisitas adalah:

1. Transformasi variabel, baik variabel respon, variabel penjelas, maupun keduanya. Beberapa transformasi yang digunakan adalah $\ln , \log , \sqrt{ }$, dll. Transformasi \log / \ln dan $\sqrt{ }$ hanya bisa digunakan jika semua data bernilai positif.
2. Menggunakan metode Weighted Lesat Square (WLS).
I. Latihan pengujian Heterokaditas dengan menggunakan SPSS

Menggunakan data sebagai berikut, diuji apakah terjadi heterokaditas?

Waktu	Jml minyak (Unit)	jarak (km)	Frekuensi kirim/minggu
45	100	45	6
80	90	65	5
60	80	70	7
55	85	65	8
40	95	50	8
45	90	55	5
40	85	45	10
30	95	35	7
35	85	40	8
40	105	45	5
40	130	50	5
55	155	65	5
65	120	75	4
40	95	50	6
35	100	45	8
50	100	80	6
55	110	65	6
60	115	70	4
15	130	25	5
45	100	60	5
45	100	50	4
45	100	55	6
35	140	45	8
50	145	65	8
30	125	40	7
35	125	45	6
50	120	60	6
45	110	58	5
40	115	50	5
30	110	35	7

Jawab ：
II．Buka lembar kerja SPSS＞kemudian masukan data tersebut， dan akan terlihat tampilan sebagai berikut

［國 normahitas，sav［DataSet1］－PASW Statistics Data Editor							
\approx		［0］	ber	30		早男 三倍	明至
1 ：waktu		4500				frokuensi	
	waktu		jumiah	11 jarak			11 ver
1		1500	10000		4500	600	
2		so． 00	90 оо		6500	500	
3		6000	во 00		7000	700	
4		5500	8500		6500	300	
5		40 oo	9500		50 oo	e 00	
6		4500	9000		5500	500	
7		4000	8500		4500	1000	
8		3000	9600		3500	\％ 00	
9		3500	8500		4000	e 00	
10		4000	10500		4500	500	
11		4000	13000		50 oo	500	
12		6500	15500		6500	600	
13		6500	12000		7500	400	
14		4000	9500		5000	600	
15		3500	10000		4500	8 о0	
16		5000	10000		so oo	600	
17		5500	11000		6500	600	
18		6000	11500		7000	400	
19		1500	13000		2600	500	
20		4500	10000		60 oo	500	
21		4500	100 oo		50 00	400	
22		4500	10000		5500	600	
23		3500	14000		4500	B oo	
24		5000	14500		65.00	a 00	
06	［1］	an mo．	$135.0 n$		An n n	2 an ．	

Dilanjutkan dengan Analisa＞regresi＞linier＞masukkan jumlah pada dependent＞dan 3 lainnya di Independent $>$ kemudian sdr pilih save $>$ pilih unstandardized residual $>$ kontnue $>$ Ok．Tampilan sebagai berikut（luaran tahap 1）

Coefficients

Model B	Unstandardized Coefficients			Standardized Coefficients	
	Std．Error	Beta			
1	（Constant）	139.135	23.948		5.810
waktu	-.871	.546	-.576	.000	
warak	.580	.527	.394	-1.597	.122
frekuensi	-3.704	2.423	-.290	1.100	.281

a．Dependent Variable：jumlah

Residuals Statistics $^{\mathbf{a}}$					
Minimum Maximum Mean Std．Deviation N					
Predicted Value	88.5935	122.0407	108.5000	7.21212	30
Residual	-23.29403	44.62152	.00000	17.56670	30
Std．Predicted Value	-2.760	1.877	.000	1.000	30
Std．Residual	-1.256	2.405	.000	.947	30

a．Dependent Variable：jumlah
Sedangkan pada lembar kerja SPSS，muncul Res． 1 yang merupakan karena adanya pilihan Unstandardized residual，langkah selanjunya adalah tahap 2 ，untuk pengujian
Lakukan analisisa $>$ regresi $>$ linier $>$ masukan pada kolom dependent Res． $1>$ dan 3 lainnya pada kolom dependent $>$ continue $>\mathrm{OK}$ Luaran ：

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig．
1	Regression	.000	3	.000	.000	1.000^{a}
	Residual	8949.076	26	344.195		
	Total	8949.076	29			

a．Predictors：（Constant），frekuensi，jarak，waktu
b．Dependent Variable：Unstandardized Residual

Coefficients ${ }^{\text {a }}$

Model B	Unstandardized Coefficients			Standardized Coefficients		
	Std．Error	Beta				
1	（Constant）	$-1.628 \mathrm{E}-15$	23.948		.000	1.000
	waktu	.000	.546	.000	.000	1.000
	jarak	.000	.527	.000	.000	1.000
	frekuensi	.000	2.423	.000	.000	1.000

a．Dependent Variable：Unstandardized Residual

Residuals Statistics ${ }^{\text {a }}$

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	.0000000	.0000000	.0000000	.00000000	30
Residual	-23.29403305	44.62151718	.00000000	17.56669694	30
Std. Predicted Value	.000	.000	.000	.000	30
Std. Residual	-1.256	2.405	.000	.947	30

a. Dependent Variable: Unstandardized Residual

Penjelasan:

Dengan memperhatikan pada nilai t hitung $<\mathrm{t}$ table, dan nilai probability $>0,05$, maka dinyatakan tidak signifikan, sehingga dengan memperhatikan Ho = tidak ada heterokaditas, dan H1 ada heterokaditas, maka kesimpulan akhir pada data tersebut tidak terjadi heterokaditas.

2. Penyelesaian dengan menggunakan STATA

1. Buka lembar stata $>$ pilih File $>$ pilih kirim.dta $>$ data $>$ data editor > data browser

waktu	jml	jarak	frek
45	100	45	6
80	90	65	5
60	80	70	7
55	85	65	8
40	95	50	8
45	90	55	5
40	85	45	10
30	95	35	7
35	85	40	8
40	105	45	5
40	130	50	5
55	155	65	5
65	120	75	4
40	95	50	6
35	100	45	8
50	100	80	6

55	110	65	6
60	115	70	4
15	130	25	5
45	100	60	5
45	100	50	4
45	100	55	6
35	140	45	8
50	145	65	8
30	125	40	7
35	125	45	6
50	120	60	6
45	110	58	5
40	115	50	5
30	110	35	7

2. Buka $>$ statistic $>$ linier model and related $>$ regression diagnostic $>$ specification model etc $>$ ok

3. Keluar jendela kerja berikut

4. Langkah pertama $>$ tets heterokadisitas $>$ pilih Beush Pagan $>\mathrm{ok}$

Penjelasan : nilai $\mathrm{P}=0,1640>0.05 \mathrm{H} 1$ ditolak, H0 diterima $/$ Kesimpulan Tidak terjadi heterokadisitas.

III. Cara kedua dengan menggunakan Im test

a. statistic > linier model and related $>$ regression diagnostic $>$ specification model et > imtest

```
e=%=t imtest
Cameron : Trivedi*= decompo=ition of TM-ve=t
```

Source	chiz	df	p
Heteroskediasticity	3.45	5	0.6309
grexness	9.21	2	0.0100
Kurtosi=	0.63	1	0.4261
Total	13.29	日	0.1022

Penjelasan:
Nilai p heterokadistas $=0,6308>0.05$, berarti tidak terjadi heterokadisitas.

IV. Pengujian Multikolinieritas

1. Statistic > linier model and related $>$ regression diagnostic $>$ specification model et > VIF Output

> - estat vi£

Variable	VIF	$1 / V I F$
frek	1.08	0.927321
jarak	1.08	0.927321
Mean VIF	1.08	

Penjelasan:
Nilai VIF frek dan jarak 1,08 lebih kecil dari 5, dengan nilai tolerance $1.08>0.20$.
Kesimpulan: Tidak terjadi Multikolinieritas .
V. Pengujian Regresi menjadi:
. regreas jmil jarsk frek, bera

Source	ss	df	Ms	Number of obs	30 0.87
Model	630.684006	2	315.342003	Prob $>$ E	0.4318
Regidual	9826.81599	27	363.956148	R-squared	0.0603
Total	10457.5	29	360.603448	Reot MSE	19.078
jmı	Coef.	Std. Err.	t	$p>\|t\|$	Beta
jarak	$-.1358347$. 2849015	-0.48	0.637	-. 0923999
frek	-3.240084	2.473174	-1.31	0.201	-.2538031
_cons	135.7413	24.52981	5.53	0.000	

Penjelasan:

1. Persamaan regresi Jumlah $=135,74-0.135$ jarak- 3,24 frek

Latihan 2. Menggunakan data H.latan bank.dta

roa	car	Idr	npl	year
0.1546	0.4193	0.0242	0.0863	2011
0.1554	0.559	0.1206	0.2089	2011
0.1515	0.5994	0.1306	0.2668	2011
0.2753	0.6075	0.1035	0.3294	2011
0.1209	0.5946	0.105	0.2003	2011
0.4804	0.88	0.3255	0.4349	2011
0.1362	0.5578	0.2125	0.2316	2011
0.221	0.6284	0.2459	0.3626	2011
0.1369	0.5276	0.0059	0.1626	2011
0.4677	0.8643	0.3059	0.2434	2011
0.1447	0.5857	0.1059	0.1434	2011
0.1989	0.5237	0.0059	0.1434	2011
0.1916	0.4656	0.004	0.1533	2012
0.0342	0.5502	0.104	0.1533	2012
0.1677	0.5454	0.004	0.1533	2012
0.0303	0.4684	0.0044	0.2328	2012
0.0445	0.4877	0.0044	0.2328	2012

0.206	0.7767	0.1044	0.3328	2012
0.0069	0.4973	0.0076	0.1852	2012
0.0184	0.4053	0.0076	0.1852	2012
0.2391	0.6212	0.1076	0.2852	2012
0.3423	0.7127	0.1141	0.4848	2012
0.0118	0.5392	0.0141	0.2848	2012
0.0554	0.3547	0.0141	0.181	2012
0.0586	0.553	0.0141	0.381	2013
0.3007	0.7033	0.1474	0.4898	2013
0.1483	0.5211	0.0147	0.1898	2013
0.0719	0.3653	0.0205	0.1936	2013
0.0608	0.5485	0.1205	0.1936	2013
0.3832	0.7293	0.2266	0.3302	2013
0.1523	0.406	0.0266	0.1302	2013
0.0211	0.2065	0.024	0.109	2013
0.2445	0.7388	0.224	0.509	2013
0.0431	0.3854	0.0006	0.2668	2013
0.0608	0.1558	0.0035	0.1294	2013
0.1402	0.5982	0.045	0.1003	2013

Pertanyaan:

1. Ujilah asumsi klasik
2. Tuliskan persamaan regresi ganda

Jawab :

1. Uji normalitas

MENGGUNAKAN SKWENES

statistic > summaries, table > pilih distribution plot > pilih skewness
$>$ data masuk > ok
output
. sktest roa car ldr mol

Variable	Skerness/Zartosis tests for Mormality				Problchit
	Obs	Pr (kkexness)	Pr (Iurtosis)	adj chin 2 (2)	
rod	36	0.0126	0.2655	6.73	0.0345
car	36	0.6530	0.2818	1.45	0.4850
1 dr	36	0.0076	0.4458	6.91	0.0316
apl	36	0.0203	0.6559	5.37	0.0682

Penjelasan:

variable	Nilai (p)	P SLF
roa	0.0345	tidak normal
car	0.4850	normal
Idr	0.0316	tidak normal
npl	0.0682	normal

2. Dicoba dengan Sphiro wilk

statistic $>$ summaries, table $>$ pilih distribution plot $>$ pilih saphiro $>$ data masuk > ok

Varcable	Cb	**	F*	x	ab>z
rea	36	0.90796	3.722	2.434	0.00745
cas	36	0.96767	1.307	0.495	0.20577
14.	36	0.33023	6.366	3.368	0.00013
np1	36	0.92653	3.357	2.243	0.012

awilk =02 1dr apl

Vaeiabla	Oba	\#	v	$=$	Eramer
raz	26	0.90322	3.529	2.637	0.30418
24x	35	3.32354	6.634	3.333	0.00005
np1	25	0. 91029	3.271	2.478	0.06660

V2=22b1a	cba	*'	7*	$=$?
:02	35	0.30795	3.722	2.434	2.80745
-az	35	0.80796	3.722	2.434	0.09746
$14=$	36	0.32023	6.186	3.563	0.00013
apl	36	0.91693	3.357	2.243	0.01245

Penjelasan:

Dengan memperhatikan pada P VL, maka >0.05 kecuali variable latent car

II. Pengujian Heterokadisitas

Buka $>$ statistic $>$ linier model and related $>$ regression diagnostic $>$ specification model etc > pilih IM

Breusch-Pagen / Cook-nieisberg test for hatarosksdasticit
fo: Constant varianca
Variables: fitted values of car
$\operatorname{shi2}(1)=5.31$
Prob 3 ehi2 $=0.0212$
estat imtest
Camaron i Trivedi's decomposition of TM-test

Sourca	ahi2	df	p
Hetaroskedastiaity	17.73	14	0.2192
Skemess	4.51	4	0.3609
Kurtosis	1.45	1	0.2293
Total	23.69	19	0.2082

Penjelasan:
Nilai p heterokadistas $=0,2192>0.05$, berarti tidak terjadi heterokadisitas.
2. Penghitunganj Multikolinieritas

Buka > statistic $>$ linier model and related $>$ regression diagnostic $>$ specification model etc $>$ pilih VIF.
. estat vif

Variable	VIF	1/VIF
ldar	2.77	0.360827
raa	2.51	0.396118
mpl	1.72	0.582383
Year	1.24	0.809345
Yean VIF	2.06	

Penjelasan :
Nilai VIF ldr roan pl year lebih kecil dari 5, dengan nilai tolerance $2.06>0.20$.
Kesimpulan: Tidak terjadi Multikolinieritas .

III. Pengujian Regresi

Buka > statistic > linier regresion > masukkan car ldr roan pl
. regress car roa ldr nopl

Source	SS	df	45	Numier of obs		36
				$E(3,32)$	-	27.14
uciel	. 612538229	3	. 20417941	Prob > F	-	0.0000
Residual	. 24072576	32	. 00752268	R-scquared	-	0.7179
				adj a -3¢بared		0.6914
Total	. 85326399	35	. 024379971	Root MSE	-	. 08673

car	Ccef.	Std. Irr.	t	$2\rangle \mid \mathrm{t}$]	[954 Conf. Interva1]	
roa	.4998944	.1870048	2.67	0.012	.119978	.8809107
ldr	.531724	.2543434	2.09	0.045	.0136434	1.049805
ap1	.3599818	.1606489	2.24	0.032	.0327508	.6872123
cons	.3358733	.0356987	9.41	0.009	.2631574	.4085891

Persamaan:
$\mathrm{Car}=0.335+.49$ roa $+.531 \mathrm{ldr}+.35 \mathrm{npl}$
Dengan R2 (determinan) 71,79 persen, sangat bagus secara bersama roa ldr dan nol berpengaruh pada cara sebesar 71,79 persen, sisanya 28,21 persen disebabkan faktor lain.

Latihan III

Menggunakan data sebagai berikut

sex	umur	tb	bb	imt	klas_imt
1	55	150	1	24.44444	24.44444
1	46	153	1	19.65056	19.65056
1	40	154	2	16.86625	16.86625
2	41	143	1	20.04988	20.04988
2	43	144	1	20.73688	20.73688
1	40	142	1	19.83733	19.83733
1	40	143	2	19.56086	19.56086
2	48	146	1	22.5183	22.5183
2	39	145	2	18.54935	18.54935
2	45	143	1	22.00597	22.00597

Ujilah asumsi klasik dari data tersebut

1. Uji Normalitas menggunakan STATA

a. menggunakan swilk saphiro
buka statistic > summaries, tabel > distribution > pilih swilk saphiro masukkan variable latent bb,tb imt, klas imt >ok

. swilk bo to int klas_int

Shapiro-äilk $\bar{\pi}$ test for normal data

Variable	Obs	\#	∇	z	Frabis
bb	10	0.86423	2.092	1.369	0.08557
tb	10	0.84463	2.394	1.644	0.05013
int	10	0.77048	0.455	-1.255	0.85522
klas_int	10	0.97048	0.455	-1.255	0.85522

Penjelasan:
Variable latent bb,tb,imt, klas imt, berdistribusi normal, sedangkan X2 tidak berdistribusi normal
b. heterokadisitas

Cameron \& Trivedi's decomposition of TM -test

Source	chi2	df	D
Heteroskeasticity	4.30	5	0.5065
Skemess	1.00	2	0.6061
Kurtosis	1.64	1	0.2009
Total	6.94	8	0.5429

Penjelasan:
Nilai p hetero >0.05, maka dinyatakan tidak terjadi heterokadisitas

c. Multikolinieritas

. estat vif

Variable	VIF	$1 / \mathrm{VIF}$
int	1.03	0.968004
tb	1.03	0.960004
Mean VIF	1.03	

Penjelasan:
Nilai VIF dari Variable latent imt dan $\mathrm{tb}<5$, dengan nilai tolerance $1.03>0.20$. maka dinyatakan tidak terjadi multikoliniertas.

IV. Perhitungan Regresi

Penjelasan:

1. Nilai tb berpengaruh pada bb
2. Nilai imt berpengaruh pada bb
3. Nilai Klas imt berpengaruh pada bb
4. secara bersama tb , imt, klas imt berpengaruh pada bb dengan determinan 99,85 persen (sangat baik)

sterale 14 PENELITIAN

Dr. DWI SIHONO RAHARJO, SE., MM. Saat ini menjadi tenaga pengajar di Program Pascasarjana (S3) dan (S2), Ilmu Manajemen, Fakulatas Ekonomi Universitas Persada Indonesia YAl Jakarta dan di FEB Universitas Tarumanagara Jakarta. Aktif menulis buku dan jurnal serta menjadi konsultan di bidang manajemen dan keuangan.

Prof Dr. Ir. Agus Djoko Santosa., SU adalah pengajar tetap di UPI YAI Jakarta, dan di beberapa Perguruan Tinggi di Yogyakarta. Selain sebagai pengajar, juga peneliti dalam bidang Humaniora. Aktif menulis buku yang terkait dengan riset dan analisis kualitatif menggunakan Nvivo, dalam bidang riset Metodologi Kuantitatif dengan pendekatan SEM, dan Metodologi Kualitatif.

